Sales Maximization Based on Neuro-Marketing Techniques in Virtual Environments

  • Washington X. QuevedoEmail author
  • Paulina F. VenegasEmail author
  • Viviana B. LópezEmail author
  • Cristian M. GallardoEmail author
  • Aldrin G. AcostaEmail author
  • Julio C. TapiaEmail author
  • Víctor H. AndaluzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)


This article describes an analysis of the merchandising techniques used in Neuromarketing through a virtual reality application to inquire the consumer behavior when purchasing mass consumption products. The results of the virtual test will affect the costs optimization, reduction of time, and logistics when studying the effectiveness of each technique. The application consists of a virtual environment replica of a real supermarket, which allows the user to interact with the products according to: the conscious and unconscious perception at a purchase and the influence of merchandising techniques (location of the products, assortment management and accessibility, and so on). The results of the experiment validate the merchandising techniques with product rotation processes and sales increase, without study them in a real supermarket.


Virtual Marketing Neuromarketing Merchandising Consumer study 



The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia – CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this work.


  1. 1.
    Sheth, J.N., Parvatiyar, A.: Relationship marketing in consumer markets: antecedents and consequences. J. Acad. Mark. Sci. 23, 255–271 (1995)CrossRefGoogle Scholar
  2. 2.
    Wilden, R., Gudergan, S.P.: The impact of dynamic capabilities on operational marketing and technological capabilities: investigating the role of environmental turbulence. J. Acad. Mark. Sci. 43, 181–199 (2015)CrossRefGoogle Scholar
  3. 3.
    Homburg, C., Vomberg, A., Enke, M., Grimm, P.H.: The loss of the marketing department’s influence: is it really happening? And why worry? J. Acad. Mark. Sci. 43, 1–13 (2015)CrossRefGoogle Scholar
  4. 4.
    Ulman, Y.I., Cakar, T., Yildiz, G.: Ethical issues in neuromarketing: I consume, therefore I am! Sci. Eng. Ethics 21, 1271–1284 (2015)CrossRefGoogle Scholar
  5. 5.
    Agarwal, S., Dutta, T.: Neuromarketing and consumer neuroscience: current understanding and the way forward. Decision 42, 457–462 (2015)CrossRefGoogle Scholar
  6. 6.
    Trettel, A., Cherubino, P., Cartocci, G., Rossi, D., Modica, E., Maglione, A.G., di Flumeri, G., Babiloni, F.: Transparency and reliability in neuromarketing research. In: Thomas, A.R., Pop, N.A., Iorga, A.M., Ducu, C. (eds.) Ethics and Neuromarketing, pp. 101–111. Springer, Cham (2017). Scholar
  7. 7.
    Daugherty, T., Hoffman, E.: Neuromarketing: understanding the application of neuroscientific methods within marketing research. In: Thomas, A.R., Pop, N.A., Iorga, A.M., Ducu, Cristian (eds.) Ethics and Neuromarketing, pp. 5–30. Springer, Cham (2017). Scholar
  8. 8.
    Castro, J.C., Quisimalin, M., Córdova, V.H., Quevedo, W.X., Gallardo, C., Santana, J., Andaluz, V.H.: Virtual reality on e-Tourism. In: Kim, K.J., Kim, H., Baek, N. (eds.) ICITS 2017. LNEE, vol. 450, pp. 86–97. Springer, Singapore (2018). Scholar
  9. 9.
    Burke, R.R.: Virtual reality for marketing research. In: Moutinho, L., Sokele, M. (eds.) Innovative Research Methodologies in Management, pp. 63–82. Palgrave Macmillan, Cham (2018). Scholar
  10. 10.
    Quevedo, W.X., Sánchez, J.S., Arteaga, O., Álvarez, M., Zambrano, V.D., Sánchez, C.R., Andaluz, V.H.: Virtual reality system for training in automotive mechanics. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, pp. 185–198, June 2017Google Scholar
  11. 11.
    Vecchiato, G., Jelic, A., Tieri, G., Maglione, A.G., De Matteis, F., Babiloni, F.: Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cogn. Process. 16, 425–429 (2015)CrossRefGoogle Scholar
  12. 12.
    Marasco, A., Buonincontri, P., van Niekerk, M., Orlowski, M., Okumus, F.: Exploring the role of next-generation virtual technologies in destination marketing. J. Destin. Mark. Manag., 2–5 (2018)Google Scholar
  13. 13.
    Van Kerrebroeck, H., Brengman, M., Willems, K.: Escaping the crowd: an experimental study on the impact of a virtual reality experience in a shopping mall. Comput. Hum. Behav. 77, 437–450 (2017)CrossRefGoogle Scholar
  14. 14.
    Dos Santos, R.D.O.J., de Oliveira, J.H.C., Rocha, J.B., Giraldi, J.D.M.E.: Eye tracking in neuromarketing: a research agenda for marketing studies. Int. J. Psychol. Stud. 71, 32 (2015)Google Scholar
  15. 15.
    Daugherty, T., Hoffman, E.: Neuromarketing: understanding the application of neuroscientific methods within marketing research. In: Ethics and Neuromarketing, pp. 5–30 (2017)Google Scholar
  16. 16.
    Ungureanu, F., Lupu, R.G., Cadar, A., Prodan, A.: Neuromarketing and visual attention study using eye tracking techniques. In: 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, pp. 553–557 (2017)Google Scholar
  17. 17.
    Jaramilllo, E., Gómez, V., Peña, A., Osuna, S., Lopera, L.: Automatic identification of emotional patterns in audiovisual adverstising by bioelectrical brian activity of an individual. In: 11th Iberian Conference on Information Systems and Technologies (CISTI), Gran Canaria, pp. 1–7 (2016)Google Scholar
  18. 18.
    Wang, C.H., Shih, Y.H., Lo, Y.C., Huang, C.Y.: Researching the adolescent visual color perception and brain wave in dynamic images. In: International Conference on Advanced Materials for Science and Engineering (ICAMSE), Tainan, pp. 162–164 (2016)Google Scholar
  19. 19.
    Bouzakraoui, M.S., Sadiq, A., Enneya, N.: Towards a framework for customer emotion detection. In: IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), Agadir, pp. 1–6 (2016)Google Scholar
  20. 20.
    Taqwa, T., Suhendra, A., Hermita, M., Darmayantie, A.: Implementation of Naïve Bayes method for product purchasing decision using neural impulse actuator in neuromarketing. In: International Conference on Information & Communication Technology and Systems (ICTS), Surabaya, pp. 113–118 (2015)Google Scholar
  21. 21.
    Pukach, P., Shakhovska, K.: The mathematical method development of decisions supporting concerning products placement based on analysis of market basket content. In: 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), pp. 347–350 (2017)Google Scholar
  22. 22.
    Wu, J., Kim, A., Koo, J.: Co-design visual merchandising in 3D virtual stores: a facet theory approach. Int. J. Retail Distrib. Manag. 43(6), 538–560 (2015)CrossRefGoogle Scholar
  23. 23.
    Andaluz, V.H., Sánchez, J.S., Chamba, J.I., Romero, P.P., Chicaiza, F.A., Varela, J., Quevedo, W.X., Gallardo, C., Cepeda, L.F.: Unity3D virtual animation of robots with coupled and uncoupled mechanism. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2016, Part I. LNCS, vol. 9768, pp. 89–101. Springer, Cham (2016). Scholar
  24. 24.
    Sauro, J., Lewis, J.R.: When designing usability questionnaires, does it hurt to be positive? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2215–2224. ACM, May 2011Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de las Fuerzas Armadas ESPESangolquiEcuador

Personalised recommendations