Advertisement

Virtual Rehabilitation of Carpal Tunnel Syndrome Through Force Feedback

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)

Abstract

The present paper proposes a system oriented to the rehabilitation of carpal tunnel syndrome by means of the use of haptic devices with force feedback. The system, based on entertainment, handles different applications, as well as movements in a 3D graphic environment, which is devised with daily tasks that allow to develop skills and abilities to reduce patient´s affection. The system is designed with the integration of Unity3D, as well as Novint Falcon haptic device. In which, the patient interacts with the developed applications while receives force feedback. At the same time, the patient performs physiotherapeutic exercises that attack the affection in a proper manner to improve patient’s health. Experimental results manifest the system’s validity, which generates necessary and efficient exercises for the process of carpal tunnel rehabilitation. In addition, the system deploys a human – machine interaction oriented to the development of physic therapies.

Keywords

Carpal tunnel syndrome CTS Rehabilitation system Force feedback Unity3D 

Notes

Acknowledgement

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia – CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017- 06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GIARSI, for the support to develop this paper.

References

  1. 1.
    Andaluz, V.H., Salazar, P.J., Silva, M., Escudero, M., Bustamante, C.: Rehabilitation of upper limb with force feedback. In: 2016 IEEE International Conference on Automatica (ICA-ACCA), Curicó, Chile, pp. 99–104 (2016)Google Scholar
  2. 2.
    Ramírez-Fernández, C., Morán, A.L., García-Canseco, E.: Haptic feedback in motor hand virtual therapy increases precision and generates less mental workload. In: 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Istanbul, pp. 280–286 (2015)Google Scholar
  3. 3.
    Ramírez-Fernández, C., García-Canseco, E., Morán, A.L., Orihuela-Espina, F.: Design principles for hapto-virtual rehabilitation environments: effects on effectiveness of fine motor hand therapy. In: Fardoun, H.M., Penichet, V.M.R., Alghazzawi, D.M. (eds.) REHAB 2014. CCIS, vol. 515, pp. 270–284. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48645-0_23CrossRefGoogle Scholar
  4. 4.
    Andaluz, V.H., et al.: Virtual reality integration with force feedback in upper limb rehabilitation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10073, pp. 259–268. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50832-0_25CrossRefGoogle Scholar
  5. 5.
    Zepeda-Ruelas, E., Gudiño-Lau, J., Durán-Fonseca, M., Charre-Ibarra, S., Alcalá-Rodríguez, J.: Control Háptico con Planificación de Trayectorias Aplicado a Novint Falcon. La Mecatrónica en México 3(2), 65–74 (2014)Google Scholar
  6. 6.
    Haarth, R., Ejarque, G.E., Distefano, M.: Interfaz HÁPTICO aplicada en la manipulación de objetos. In: Instituto de Automática y Electrónica Industrial, Facultad de Ingeniería Universidad Nacional de Cuyo (2010)Google Scholar
  7. 7.
    Hamza-Lup, F.G., Baird, W.H.: Feel the static and kinetic friction. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 181–192. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31401-8_17CrossRefGoogle Scholar
  8. 8.
    Uribe-Quevedo, A., Ortiz, S., Rojas, D., Kapralos, B.: Hand tracking as a tool to quantify carpal tunnel syndrome preventive exercises. In: 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA), Chalkidiki, Greece, pp. 1–5 (2016)Google Scholar
  9. 9.
    Silişteanu, C.S., Crăciun, D.M., David, M.: The importance of the sensor devices in the recovery of the patients with the carpal tunnel syndrome. In: 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, pp. 426–430, (2016)Google Scholar
  10. 10.
    Arita, S., Hashshizume, H., Honda, M.: A new approach to clarify the fuzziness of medical diagnosis by diagnostic layers — a diagnostic system for Carpal Tunnel Syndrome with two layers of diagnostic filters using clinical indicators. In: 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), Kitakyushu, pp. 845–850, (2014)Google Scholar
  11. 11.
    Renon, P., Yang, C., Ma, H., Cui, R.: Haptic interaction between human and virtual iCub robot using Novint Falcon with CHAI3D and MATLAB. In: 32nd Chinese Control Conference (CCC), Xi’an, pp. 6045–6050 (2013)Google Scholar
  12. 12.
    Song, Z., Guo, S., Yazid, M.: Development of a potential system for upper limb rehabilitation training based on virtual reality. In: 2011 4th International Conference on Human System Interactions (HSI), Yokohama, pp. 352–356 (2011)Google Scholar
  13. 13.
    Gupta, A., OMalley, M.K.: Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006)CrossRefGoogle Scholar
  14. 14.
    Adamovich, S., et al.: A virtual reality–based exercise system for hand rehabilitation post-stroke. Teleoper. Virtual Environ. 14, 161–174 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Universidad de Técnica de AmbatoAmbatoEcuador

Personalised recommendations