Stem Cell-Based Organoid Models in Lung Development and Diseases

  • Ahmed El-Hashash


The recent application of co-culture organoid systems in different organs has successfully helped in the in vitro cultivation of stem cell populations that were previously inaccessible. These co-culture organoid systems have provided a novel method for investigating the cellular and molecular mechanisms controlling the development, interaction, and function of these cell types. In the lung, organoid cultures have been recently used for cell-cell interaction studies. These cultures rely on the interactions between the lung stem cells and a putative niche cell that is important for their behavior, differentiation, and growth. The organoid systems have been used in the study of airway basal cells, but the applications of organoid systems for the study of other lung regions or cell types are still in its infancy. This chapter describes our current knowledge of the stem cell-based organoid models in lung development and diseases. It also describes recent advances in the embryonic lung-derived organoids, the adult lung-derived organoids, and organoids from iPSC-derived lung epithelial cells.


Organoids Stem and progenitor cells Co-culture Mouse lung Human lung iPSCs 


  1. Alanis, D. M., Chang, D. R., Akiyama, H., et al. (2014). Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nature Communications, 5, 3923.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alder, J. K., Barkauskas, C. E., Limjunyawong, N., et al. (2015). Telomere dysfunction causes alveolar stem cell failure. Proceedings of the National Academy of Sciences of the United States of America, 112, 5099–5104.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barkauskas, C. E., Cronce, M. J., Rackley, C. R., et al. (2013). Type 2 alveolar cells are stem cells in adult lung. The Journal of Clinical Investigation, 123, 3025–3036.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barkauskas, C. E., Chung, M.-I., Fioret, B., Gao, X., Katsura, H., & Hogan, B. L. (2017). Lung organoids: Current uses and future promise. Development, 144, 986–997.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barker, N., Huch, M., Kujala, P., et al. (2010). Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 6, 25–36.CrossRefPubMedGoogle Scholar
  6. Broutier, L., Andersson-Rolf, A., Hindley, C. J., et al. (2016). Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 11, 1724–1743.CrossRefPubMedGoogle Scholar
  7. Cao, Z., Lis, R., Ginsberg, M., et al. (2016). Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nature Medicine, 22, 154–162.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen, L., & Zosky, G. R. (2017). Lung development. Photochemical & Photobiological Sciences, 16, 339–346.CrossRefGoogle Scholar
  9. Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165, 1586–1597.CrossRefPubMedGoogle Scholar
  10. Curradi, G., Walters, M. S., Ding, B.-S., et al. (2012). Airway basal cell vascular endothelial growth factor mediated cross-talk regulates endothelial cell-dependent growth support of human airway basal cells. Cellular and Molecular Life Sciences, 69, 2217–2231.CrossRefPubMedGoogle Scholar
  11. del Moral, P.-M., & Warburton, D. (2010). Explant culture of mouse embryonic whole lung, isolated epithelium, or mesenchyme under chemically defined conditions as a system to evaluate the molecular mechanism of branching morphogenesis and cellular differentiation. Methods in Molecular Biology, 633, 71–79.CrossRefPubMedGoogle Scholar
  12. Desai, T. J., Brownfield, D. G., & Krasnow, M. A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 1–16.Google Scholar
  13. Ding, B.-S., Nolan, D. J., Guo, P., et al. (2011). Endothelial-derived inductive angiocrine signals initiate and sustain regenerative lung alveolarization. Cell, 147(3), 539–553.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dye, B. R., Hill, D. R., Ferguson, M. A. H., et al. (2015). In vitro generation of human pluripotent stem cell derived lung organoids. Elife, 4, e05098.CrossRefPubMedCentralGoogle Scholar
  15. Dye, B. R., Dedhia, P. H., Miller, A. J., et al. (2016). A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife, 5, e19732.CrossRefPubMedPubMedCentralGoogle Scholar
  16. El-Hashash, A. H. (2013). Lung stem cells: Mechanisms of behavior, development and regeneration. Anatomy and Physiology, 3, 119–128.CrossRefGoogle Scholar
  17. Firth, A. L., Dargitz, C. T., Qualls, S. J., et al. (2014). Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 111(17), E1723–E1730.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fox, E., Shojaie, S., Wang, J., et al. (2015). Three-dimensional culture and FGF signaling drive differentiation of murine pluripotent cells to distal lung epithelial cells. Stem Cells and Development, 24, 21–35.CrossRefPubMedGoogle Scholar
  19. Fulcher, M. L., & Randell, S. H. (2013). Human nasal and tracheobronchial respiratory epithelial cell culture. Methods in Molecular Biology, 945, 109–121.CrossRefPubMedGoogle Scholar
  20. Gao, X., Bali, A. S., Randell, S. H., & Hogan, B. L. M. (2015). GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. The Journal of Cell Biology, 211, 669–682.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ghaedi, M., Calle, E. A., Mendez, J. J., et al. (2013). Human iPS cell derived alveolar epithelium repopulates lung extracellular matrix. The Journal of Clinical Investigation, 123, 4950–4962.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gotoh, S., Ito, I., Nagasaki, T., et al. (2014). Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports, 3, 394–403.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., et al. (2013). Artificial three-dimensional niches deconstruct pancreas development in vitro. Development, 140, 4452–4462.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., & Grapin-Botton, A. (2014). In vitro pancreas organogenesis from dispersed mouse embryonic progenitors. Journal of Visualized Experiments, 89, e51725.Google Scholar
  25. Greggio, C., De Franceschi, F., & Grapin-Botton, A. (2015). Concise reviews: In vitro-produced pancreas organogenesis models in three dimensions: Self-organization from few stem cells or progenitors. Stem Cells, 33, 8–14.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gurdon, J. B. (1988). A community effect in animal development. Nature, 336, 772–774.CrossRefPubMedGoogle Scholar
  27. Hegab, A. E., Arai, D., Gao, J., et al. (2015). Mimicking the niche of lung epithelial stem cells and characterization of several effectors of their in vitro behavior. Stem Cell Research, 15, 109–121.CrossRefPubMedGoogle Scholar
  28. Herriges, M., & Morrisey, E. E. (2014). Lung development: Orchestrating the generation and regeneration of a complex organ. Development, 141, 502–513.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hill, A. R., Donaldson, J. E., Blume, C., et al. (2016). IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit. Tissue Barriers, 4, e1206378.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hogan, B. L. M., Barkauskas, C. E., Chapman, H. A., et al. (2014). Repair and regeneration of the respiratory system: Complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell, 15, 123–138.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huang, S. X. L., Islam, M. N., O’Neill, J., et al. (2014). Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature Biotechnology, 32(1), 84–91.CrossRefPubMedGoogle Scholar
  32. Huang, S. X. L., Green, M. D., de Carvalho, A. T., et al. (2015). The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nature Protocols, 10, 413–425.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Huch, M., Bonfanti, P., Boj, S. F., et al. (2013a). Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/Rspondin axis. The EMBO Journal, 32, 2708–2721.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huch, M., Dorrell, C., Boj, S. F., et al. (2013b). In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 494, 247–250.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Huch, M., Gehart, H., van Boxtel, R., et al. (2015). Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 160, 299–312.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hynds, R. E., Butler, C. R., Janes, S. M., & Giangreco, A. (2016). Expansion of human airway basal stem cells and their differentiation as 3D tracheospheres. Methods in Molecular Biology, 1, 11.Google Scholar
  37. Ibrahim, A., & El-Hashash, A. H. (2015). Lung stem cell behavior in development and regeneration. Edorium Journal of Stem Cell Research and Therapy, 1, 1–13.Google Scholar
  38. Jaskoll, T. F., Don-Wheeler, G., Johnson, R., & Slavkin, H. C. (1988). Embryonic mouse lung morphogenesis and type II cytodifferentiation in serumless, chemically defined medium using prolonged in vitro cultures. Cell Differentiation, 24, 105–117.CrossRefPubMedGoogle Scholar
  39. Karthaus, W. R., Iaquinta, P. J., Drost, J., et al. (2014). Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 159, 163–175.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Konishi, S., Gotoh, S., Tateishi, K., et al. (2016). Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Reports, 6, 18–25.CrossRefPubMedGoogle Scholar
  41. Kumar, P. A., Hu, Y., Yamamoto, Y., et al. (2011). Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell, 147, 525–538.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lee, J.-H., Bhang, D. H., Beede, A., et al. (2014). Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 156, 440–455.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Longmire, T. A., Ikonomou, L., Hawkins, F., et al. (2012). Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell, 10, 398–411.CrossRefPubMedPubMedCentralGoogle Scholar
  44. McCracken, K. W., Catá, E. M., Crawford, C. M., et al. (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 516, 400–404.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mondrinos, M. J., Koutzaki, S., Lelkes, P. I., & Finck, C. M. (2007). A tissue engineered model of fetal distal lung tissue. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L639–L650.CrossRefPubMedGoogle Scholar
  46. Mondrinos, M. J., Jones, P. L., Finck, C. M., & Lelkes, P. I. (2014). Engineering de novo assembly of fetal pulmonary organoids. Tissue Engineering. Part A, 20, 2892–2907.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Morrisey, E. E., & Hogan, B. L. M. (2010). Preparing for the first breath: Genetic and cellular mechanisms in lung development. Developmental Cell, 18, 8–23.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mou, H., Zhao, R., Sherwood, R., et al. (2012). Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell, 10, 385–397.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mou, H., Vinarsky, V., Tata, P. R., et al. (2016). Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell, 19, 217–231.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nadkarni, R. R., Abed, S., & Draper, J. S. (2016). Organoids as a model system for studying human lung development and disease. Biochemical and Biophysical Research Communications, 473, 675–682.CrossRefPubMedGoogle Scholar
  51. Nikolić, M. Z., & Rawlins, E. L. (2017). Lung organoids and their use to study cell-cell interaction. Current Pathobiology Reports, 5, 223.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Passier, R., Orlova, V., & Mummery, C. (2016). Complex tissue and disease modeling using hiPSCs. Cell Stem Cell, 18, 309–321.CrossRefPubMedGoogle Scholar
  53. Quantius, J., Schmoldt, C., Vazquez-Armendariz, A. I., et al. (2016). Influenza virus infects epithelial stem/progenitor cells of the distal lung: Impact on Fgfr2b-driven epithelial repair. PLoS Pathogens, 12, e1005544.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rafii, S., Cao, Z., Lis, R., et al. (2015). Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 17, 123–136.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rankin, S. A., & Zorn, A. M. (2014). Gene regulatory networks governing lung specification. Journal of Cellular Biochemistry, 115(8), 1343–1350.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rawlins, E. L., Clark, C. P., Xue, Y., et al. (2009a). The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development, 136, 3741–3745.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rawlins, E. L., Okubo, T., Xue, Y., et al. (2009b). The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell, 4, 525–534.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ray, S., Chiba, N., Yao, C., et al. (2016). Rare SOX2(+) airway progenitor cells generate KRT5(+) cells that repopulate damaged alveolar parenchyma following influenza virus infection. Stem Cell Reports, 7, 817–825.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rock, J. R., Onaitis, M. W., Rawlins, E. L., et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 106, 12771–12775.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rock, J. R., Gao, X., Xue, Y., et al. (2011). Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell, 8, 639–648.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sato, T., Vries, R. G., Snippert, H. J., et al. (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459, 262–265.CrossRefPubMedGoogle Scholar
  62. Sato, T., van Es, J. H., Snippert, H. J., et al. (2011a). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469, 415–418.CrossRefPubMedGoogle Scholar
  63. Sato, T., Stange, D. E., Ferrante, M., et al. (2011b). Long-term expansion of epithelial organoids from human Colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 141, 1762–1772.CrossRefPubMedGoogle Scholar
  64. Schittny, J. C. (2017). Development of the lung. Cell and Tissue Research, 367(3), 427–444.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Serls, A. E., Doherty, S., Parvatiyar, P., et al. (2005). Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development, 132, 35–47.CrossRefPubMedGoogle Scholar
  66. Seth, R., Shum, L., Wu, F., et al. (1993). Role of epidermal growth factor expression in early mouse embryo lung branching morphogenesis in culture: Antisense oligodeoxynucleotide inhibitory strategy. Developmental Biology, 158, 555–559.CrossRefPubMedGoogle Scholar
  67. Sucre, J. M. S., Wilkinson, D., Vijayaraj, P., et al. (2016). A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310, L889–L898.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tadokoro, T., Wang, Y., Barak, L. S., et al. (2014). IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 111, E3641–E3649.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tadokoro, T., Gao, X., Hong, C. C., et al. (2016). BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development, 143, 764–773.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.CrossRefGoogle Scholar
  71. Takasato, M., Er, P. X., Chiu, H. S., et al. (2016). Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 536, 238–238.CrossRefPubMedGoogle Scholar
  72. Tata, P. R., Mou, H., Pardo-Saganta, A., et al. (2013). Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature, 503, 218–223.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Teisanu, R. M., Chen, H., Matsumoto, K., et al. (2011). Functional analysis of two distinct bronchiolar progenitors during lung injury and repair. American Journal of Respiratory Cell and Molecular Biology, 44, 794–803.CrossRefPubMedGoogle Scholar
  74. Treutlein, B., Brownfield, D. G., Wu, A. R., et al. (2014). Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature, 509, 371–375.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vaughan, A. E., Brumwell, A. N., Xi, Y., et al. (2015). Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 517, 621–625.CrossRefPubMedGoogle Scholar
  76. Warburton, D., El-Hashash, A., Carraro, G., et al. (2010). Lung organogenesis. Current Topics in Developmental Biology, 90, 73–158.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Watson, C. L., Mahe, M. M., Múnera, J., et al. (2014). An in vivo model of human small intestine using pluripotent stem cells. Nature Medicine, 20, 1310–1314.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wilkinson, D. C., Alva-Ornelas, J. A., Sucre, J. M. S., et al. (2016). Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Translational Medicine, 6(2), 622–633.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wong, A. P., Bear, C. E., Chin, S., et al. (2012). Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 30, 876–882.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wong, A. P., Chin, S., Xia, S., et al. (2015). Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nature Protocols, 10, 363–381.CrossRefPubMedGoogle Scholar
  81. Yin, X., Farin, H. F., van Es, J. H., et al. (2014). Niche-independent high purity cultures of Lgr5+ intestinal stem cells and their progeny. Nature Methods, 11, 106–112.CrossRefPubMedGoogle Scholar
  82. You, Y., Richer, E. J., Huang, T., & Brody, S. L. (2002). Growth and differentiation of mouse tracheal epithelial cells: Selection of a proliferative population. American Journal of Physiology. Lung Cellular and Molecular Physiology, 283, L1315–L1321.CrossRefPubMedGoogle Scholar
  83. Zhang, S., Zhou, X., Chen, T., et al. (2014). Single primary fetal lung cells generate alveolar structures in vitro. In Vitro Cellular & Developmental Biology. Animal, 50, 87–93.CrossRefGoogle Scholar
  84. Zuo, W., Zhang, T., Wu, D. Z., et al. (2014). p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature, 517, 616–620.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed El-Hashash
    • 1
  1. 1.The University of Edinburgh-Zhejiang International campus (UoE-ZJU Institute), and Centre of Stem Cell and Regenerative Medicine Schools of Medicine & Basic Medicine, Zhejiang UniversityHainingChina

Personalised recommendations