Lung Stem Cell Behavior pp 61-65 | Cite as
Lung Stem Cells in Lung Repair and Regeneration
Abstract
Intensive studies on lung development have helped to determine and characterize the lung-specific stem/progenitor cells and their regulatory molecular mechanisms. The adult lung consists of a wide range of different cell lineages, which are clearly quiescent in the absence of injury. The lung could remarkably respond quickly to different types of acute damage. This response is evidenced by the cell cycle, reentry of lung-specific stem cells, and their ability to differentiate to promote lung repair/regeneration. The process of lung repair and regeneration after acute injury, therefore, includes many of the stem and progenitor cell lineages. The accumulated research findings from lung developmental biology are currently widely used to determine the mechanisms that underlie lung repair/regeneration. This chapter describes our current knowledge of the roles of lung-specific stem cells in both lung repair and regeneration. It also describes how basic studies into lung developmental biology and regulatory molecular mechanisms are now being applied to lung repair/regeneration after injury.
Keywords
Lung development Stem and progenitor cells Repair Regeneration Signaling pathways Wnt Notch BMP TGFReferences
- Akram, K. M., Patel, N., Spiteri, M. A., & Forsyth, N. R. (2016). Lung regeneration: Endogenous and exogenous stem cell mediated therapeutic approaches. International Journal of Molecular Sciences, 17, 128.CrossRefPubMedCentralGoogle Scholar
- Barkauskas, C. E., Cronce, M. J., Rackley, C. R., et al. (2013). Type 2 alveolar cells are stem cells in adult lung. The Journal of Clinical Investigation, 123, 3025–3036.CrossRefPubMedPubMedCentralGoogle Scholar
- Bertoncello, I. (2016). Properties of adult lung stem and progenitor cells. Journal of Cellular Physiology, 231, 2582–2589.CrossRefPubMedGoogle Scholar
- Chen, F., & Fine, A. (2016). Stem cells in lung injury and repair. The American Journal of Pathology, 186, 2544–2550.CrossRefPubMedPubMedCentralGoogle Scholar
- Desai, T. J., Brownfield, D. G., & Krasnow, M. A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 1–16.Google Scholar
- Ding, B.-S., Nolan, D. J., Guo, P., et al. (2011). Endothelial-derived inductive angiocrine signals initiate and sustain regenerative lung alveolarization. Cell, 147(3), 539–553.CrossRefPubMedPubMedCentralGoogle Scholar
- El-Badrawy, M. K., Shalabi, N. M., Mohamed, M. A., Ragab, A., & Abdelwahab, H. W. (2016). Stem cells and lung regeneration. International Journal of Stem Cells, 9, 31–35.CrossRefPubMedPubMedCentralGoogle Scholar
- Gao, X., Bali, A. S., Randell, S. H., & Hogan, B. L. M. (2015). GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. The Journal of Cell Biology, 211, 669–682.CrossRefPubMedPubMedCentralGoogle Scholar
- Green, M. D., Huang, S. X., & Snoeck, H. W. (2013). Stem cells of the respiratory system: From identification to differentiation into functional epithelium. BioEssays, 35, 261–270.CrossRefPubMedGoogle Scholar
- Guseh, J. S., Bores, S. A., Stanger, B. Z., et al. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136, 1751–1759.CrossRefPubMedPubMedCentralGoogle Scholar
- Herriges, M., & Morrisey, E. E. (2014). Lung development: Orchestrating the generation and regeneration of a complex organ. Development, 141, 502–513.CrossRefPubMedPubMedCentralGoogle Scholar
- Jain, R, Barkauskas, CE, Takeda, N, Bowie, EJ, Aghajanian, H, Wang, Q, Padmanabhan, A, Manderfield, LJ,Gupta, M, Li, D, Li, L, Trivedi, CM, Hogan, BL, Epstein, JA. (2015). Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat Commun. 6, 6727-6737.Google Scholar
- Kotton, D. N., & Morrisey, E. E. (2014). Lung regeneration: Mechanisms, applications and emerging stem cell populations. Nature Medicine, 20, 822–832.CrossRefPubMedPubMedCentralGoogle Scholar
- Lee, J.-H., Bhang, D. H., Beede, A., et al. (2014). Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 156, 440–455.CrossRefPubMedPubMedCentralGoogle Scholar
- Lehmann, M., Baarsma, H. A., & Königshoff, M. (2016). WNT signaling in lung aging and disease. Annals of the American Thoracic Society, 13, S411–S416.CrossRefPubMedGoogle Scholar
- Liu, Y., Jiang, B.-J., Zhao, R.-Z., et al. (2016). Epithelial sodium channels in pulmonary epithelial progenitor and stem cells. International Journal of Biological Sciences, 12, 1150–1154.CrossRefPubMedPubMedCentralGoogle Scholar
- Mori, M., Mahoney, J. E., Stupnikov, M. R., et al. (2015). Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development, 142, 258–267.CrossRefPubMedPubMedCentralGoogle Scholar
- Pardo-Saganta, A., Law, B. M., Tata, P. R., et al. (2015). Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell, 16, 184–197.CrossRefPubMedPubMedCentralGoogle Scholar
- Peng, T., Frank, D. B., Kadzik, R. S., et al. (2015). Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature, 526, 578–582.CrossRefPubMedPubMedCentralGoogle Scholar
- Rawlins, E. L. (2015). Stem cells: Emergency back-up for lung repair. Nature, 517, 556–557.CrossRefPubMedGoogle Scholar
- Rock, J. R., Gao, X., Xue, Y., et al. (2011). Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell, 8, 639–648.CrossRefPubMedPubMedCentralGoogle Scholar
- Shi, W., Xu, J., & Warburton, D. (2009). Development, repair and fibrosis: What is common and why it matters. Respirology, 14, 656–655.CrossRefPubMedPubMedCentralGoogle Scholar
- Stabler, C. T., & Morrisey, E. E. (2017). Developmental pathways in lung regeneration. Cell and Tissue Research, 367, 677.CrossRefPubMedGoogle Scholar
- Stoltz, J.-F., de Isla, N., Li, Y. P., et al. (2015). Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells International, 2015, 734731.CrossRefPubMedPubMedCentralGoogle Scholar
- Tadokoro, T., Gao, X., Hong, C. C., et al. (2016). BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development, 143, 764–773.CrossRefPubMedPubMedCentralGoogle Scholar
- Tata, P. R., Mou, H., Pardo-Saganta, A., et al. (2013). Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature, 503, 218–223.CrossRefPubMedPubMedCentralGoogle Scholar
- Tsao, P. N., Wei, S. C., Wu, M. F., et al. (2011). Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development, 138, 3533–3543.CrossRefPubMedPubMedCentralGoogle Scholar
- Tsao, P. N., Matsuoka, C., Wei, S. C., et al. (2016). Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity. Proceedings of the National Academy of Sciences of the United States of America, 113, 8242–8247.CrossRefPubMedPubMedCentralGoogle Scholar
- Warburton, D., El-Hashash, A., Carraro, G., et al. (2010). Lung organogenesis. Current Topics in Developmental Biology, 90, 73–158.CrossRefPubMedPubMedCentralGoogle Scholar
- Weibel, E. R. (2015). On the tricks alveolar epithelial cells play to make a good lung. Am J Respir Crit CareMed. 191(5), 504–13.Google Scholar
- Whitsett, J. A., Haitchi, H. M., & Maeda, Y. (2011). Intersections between pulmonary development and disease. American Journal of Respiratory and Critical Care Medicine, 184, 401–406.CrossRefPubMedPubMedCentralGoogle Scholar
- Yang, S., Ma, K., Geng, Z., et al. (2015). Oriented cell division: New roles in guiding skin wound repair and regeneration. Bioscience Reports, 35, 6.CrossRefGoogle Scholar
- Zhang, Y., Goss, A. M., Cohen, E. D., et al. (2008). A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration. Nature Genetics, 40, 862–870.CrossRefPubMedPubMedCentralGoogle Scholar