Advertisement

Virtual Training System for Crawling Skill in Infants Using Mapping 2D: Preliminary Test

  • Edwin Pruna
  • Andrés Acurio
  • Ivón Escobar
  • Henry Cocha
  • Silvia Alpúsig
  • José Bucheli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10850)

Abstract

This paper describes the development of an interactive virtual tool, in order to encourage the ability to crawl in infants. The virtual environment in the system is implemented with the graphics engine Unity3D. The application is tested in the MagixBox platform with a high brightness projector. The environment has colorful and novel designs which are projected on a suitable floor space. User can interact with the projection due to the mapping that makes the infrared sensor and HD 2D camera in MagixBox. The sensor will continually scanning the objects that are close to the projection. The system helps in the process of activities record and saving important data for the assessment by the specialist.

Keywords

Virtual system Therapeutic exercise Unity 3D 

Notes

Acknowledgements

We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.

References

  1. 1.
    Hernandez, G.M., Sanchez, Z.M.E., Villanueva, A.D., Pérez, M.J.C.: Dynamic model for assessment crawl. Am. J. Phys. Rehabil. Med. 28(1–2), 28–32 (2016)Google Scholar
  2. 2.
    Patrick, S.K., Noah, J.A., Yang, J.F.: Interlimb coordination in human crawling reveals similarities in development and neural control with quadrupeds. J. Neurophysiol. 101(2), 603–613 (2009)CrossRefGoogle Scholar
  3. 3.
    Ghazi, M.A., Nash, M.D., Fagg, A.H., Ding, L., Kolobe, T.H.A., Miller, D.P.: Novel assistive device for teaching crawling skills to infants. In: Wettergreen, D.S., Barfoot, T.D. (eds.) Field and Service Robotics. STAR, vol. 113, pp. 593–605. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-27702-8_39CrossRefGoogle Scholar
  4. 4.
    Southerland, J.B.: Activity recognition and crawling assistance using multiple inexpensive inertial measurement units. Master’s thesis, School of Computer Science, University of Oklahoma (2012)Google Scholar
  5. 5.
    Freedland, R.L., Bertenthal, B.I.: Developmental changes in interlimb coordination: transition to hands-and-knees crawling. Psychol. Sci. 5(1), 26–32 (1994)CrossRefGoogle Scholar
  6. 6.
    Xiong, Q.L., Wu, X.Y., Xiao, N., Zeng, S.Y., Wan, X.P., Zheng, X.L., Hou, W.S.: Antagonist muscle co-activation of limbs in human infant crawling: a pilot study. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2115–2118 (2015)Google Scholar
  7. 7.
    Righetti, L., Nylen, A., Rosander, K., Ijspeert, A.J.: Kinematic and gait similarities between crawling human infants and other quadruped mammals. Front. Neurol. 6(17) (2015)Google Scholar
  8. 8.
    Weiss, P., Tirosh, E., Fehlings, D.: Role of virtual reality for cerebral palsy management. J. Child Neurol. 29, 1119–1124 (2014)CrossRefGoogle Scholar
  9. 9.
    Cho, C., Hwang, W., Hwang, S., Chung, Y.: Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J. Exp. Med. 238(3), 213–218 (2016)CrossRefGoogle Scholar
  10. 10.
    Fetters, L., Sapir, I., Chen, Y.P., Kubo, M., Tronick, E.: Spontaneous kicking in full-term and preterm infants with and without white matter disorder. Dev. Psychobiol. 52(6), 524–536 (2010)CrossRefGoogle Scholar
  11. 11.
    Smith, B.A., Trujillo-Priego, I.A., Lane, C.J., Finley, J.M., Horak, F.B.: Daily quantity of infant leg movement: wearable sensor algorithm and relationship to walking onset. Sensors 15(8), 19006–19020 (2015)CrossRefGoogle Scholar
  12. 12.
    Wu, T., Artigas, J., Mattson, W., Ruvolo, P., Movellan, J., Messinger, D.: Collecting a developmental dataset of reaching behaviors: first steps. In: IROS 2011 Workshop on Cognitive Neuroscience Robotics (2011)Google Scholar
  13. 13.
    Olsen, M.D., Herskind, A., Nielsen, J.B., Paulsen, R.R.: Body part tracking of infants. In: 2014 22nd International Conference on Pattern Recognition, pp. 2167–2172 (2014)Google Scholar
  14. 14.
    Chen, X., Liang, S., Dolph, S., Ragonesi, C.B., Galloway, J.C., Agrawal, S.K.: Design of a novel mobility interface for infants on a mobile robot by kicking. ASME J. Med. Dev. 4(3), 031006-1–031006-5 (2010)CrossRefGoogle Scholar
  15. 15.
    Lorenzo, G., Lledo, A., Pomares, J., Roig, R.: Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Comput. Educ. 98, 192–205 (2016)CrossRefGoogle Scholar
  16. 16.
    Ryu, J.-H., Park, S.-J., Park, J.-W., Kim, J.-W., Yoo, H.-J. Kim, T.-W., Hong, J.S., Han, S.-H.: Randomized clinical trial of immersive virtual reality tour of the operating theater before anesthesia in children. In: BJS, pp. 1628–1633 (2017)Google Scholar
  17. 17.
    Gamito, P., Oliveira, J., Coelho, C., Morais, D., Lopes, P., Pacheco, J., Brito, R., Soares, F., Santos, N., Barata, A.: Cognitive training on stroke via virtual reality Patients-based serious games. Disabil. Rehabil. 39(4), pp. 385–388 (2015)Google Scholar
  18. 18.
    Wexelblat, A.: Virtual Reality: Explorations and Applications. Academic Press, Cambridge (2014)Google Scholar
  19. 19.
    Morina, N., Ijntema, H., Meyerbröker, K., Emmelkamp, P.: Can virtual reality exposure therapy gains to be generalized Real-life? A meta-analysis of studies applying behavioral assessments. Behav. Res. Ther. 74, 18–24 (2015)CrossRefGoogle Scholar
  20. 20.
    Howard, M.: A meta-analysis and systematic review of literature virtual reality rehabilitation programs. Comput. Hum. Behav. 70, 317–327 (2017)CrossRefGoogle Scholar
  21. 21.
    Labaf, S., Shamsoddini, A., Hollisaz, M., Sobhani, V., Shakibaee, A.: Effects of neuro developmental gross motor function on therapy in children with cerebral palsy. Iranian J. Neurol. Child. 9(2), 36–41 (2015)Google Scholar
  22. 22.
    Valencia, R., Andrade-Cetto, J.: Mapping, Planning and Exploration with Pose SLAM. STAR, vol. 119. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-60603-3CrossRefGoogle Scholar
  23. 23.
    Hale, K.S., Stanney, K.M.: Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2014)CrossRefGoogle Scholar
  24. 24.
    Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.): Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 351. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15847-1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edwin Pruna
    • 1
  • Andrés Acurio
    • 1
  • Ivón Escobar
    • 1
  • Henry Cocha
    • 1
  • Silvia Alpúsig
    • 1
  • José Bucheli
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador

Personalised recommendations