Advertisement

Virtual Reality as a Tool for the Cascade Control Learning

  • Edwin Pruna
  • Mauricio Rosero
  • Rai Pogo
  • Ivón Escobar
  • Julio Acosta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10850)

Abstract

This work presents the development of an interactive didactic system for the learning of the cascade control technique of industrial processes, which uses an immersive virtual environment for the emulation of a plant behavior which can be monitored and controlled through an HMI (Human-Machine Interface). The virtual environment has been created through Computer Aided Design software and a graphic engine and, in addition, peripheral devices are used to achieve the immersion and interaction with the environment. Finally, the experimental results that validate the system when it is tested with a real or simulated process are presented.

Keywords

Virtual reality Unity3D Cascade control 

References

  1. 1.
    Goodwin, G., Medioli, A., Sher, W., Vlacic, L., Welsh, J.: Emulation-based virtual laboratories: a low-cost alternative to physical experiments in control engineering education. IEEE Trans. Educ. 54(1), 48–55 (2011)CrossRefGoogle Scholar
  2. 2.
    Roca Cusidó, A.: Control de procesos. [Cambrils]: [L’autor] (2010)Google Scholar
  3. 3.
    Makarova, I., Khabibullin, R., Belyaev, E., Bogateeva, A.: The application of virtual reality technologies in engineering education for the automotive industry. In: 2015 International Conference on Interactive Collaborative Learning (ICL) (2015)Google Scholar
  4. 4.
    Häfner, P., Häfner, V., Ovtcharova, J.: Teaching methodology for virtual reality practical course in engineering education. Procedia Comput. Sci. 25, 251–260 (2013)CrossRefGoogle Scholar
  5. 5.
    Abulrub, A., Attridge, A., Williams, M.: Virtual reality in engineering education: the future of creative learning. Int. J. Emerg. Technol. Learn. (iJET), 6(4) (2011)Google Scholar
  6. 6.
    Laseinde, O., Adejuyigbe, S., Mpofu, K., Campbell, H.: Educating tomorrows engineers: reinforcing engineering concepts through Virtual Reality (VR) teaching aid. In: 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (2015)Google Scholar
  7. 7.
    Li, M., Li, L., Jiao, R., Xiao, H.: Virtrul reality and artificial intelligence support future training development. In: 2017 Chinese Automation Congress (CAC) (2017)Google Scholar
  8. 8.
    Andaluz, V.H., et al.: Immersive industrial process environment from a P&ID diagram. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50835-1_63CrossRefGoogle Scholar
  9. 9.
    Turner, C., Hutabarat, W., Oyekan, J., Tiwari, A.: Discrete event simulation and virtual reality use in industry: new opportunities and future trends. IEEE Trans. Hum. Mach. Syst. 46(6), 882–894 (2016)CrossRefGoogle Scholar
  10. 10.
    Velosa, J., Cobo, L., Castillo, F., Castillo, C.: Methodological proposal for use of Virtual Reality VR and Augmented Reality AR in the formation of professional skills in industrial maintenance and industrial safety. In: Auer, M., Zutin, D. (eds.) Online Engineering & Internet of Things, vol. 22, pp. 987–1000. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64352-6_92CrossRefGoogle Scholar
  11. 11.
    de Jong, T., Linn, M., Zacharia, Z.: Physical and virtual laboratories in science and engineering education. Science 340(6130), 305–308 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edwin Pruna
    • 1
  • Mauricio Rosero
    • 1
  • Rai Pogo
    • 1
  • Ivón Escobar
    • 1
  • Julio Acosta
    • 1
  1. 1.Universidad de Las Fuerzas Armadas ESPESangolquíEcuador

Personalised recommendations