Advertisement

Perception of Absolute Distances Within Different Visualization Systems: HMD and CAVE

  • Mihalache Ghinea
  • Dinu Frunză
  • Jean-Rémy Chardonnet
  • Frédéric Merienne
  • Andras Kemeny
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10850)

Abstract

Many studies on distance perception in a virtual environment exist. Most of them were conducted using head-mounted displays (HMD) and less with large screen displays such as CAVE systems. In this paper, we propose to measure the accuracy of perceived distances in a virtual space ranging from 0 to 15 m in a CAVE system compared to an HMD. Eight subjects with different vision performances took part in an experiment. Results show that the HMD provides the best results for distances above 8 m while the CAVE provides the best results for close distances.

Keywords

Virtual immersion Absolute distance HMD CAVE Human vision 

References

  1. 1.
    Bruder, G., Argelaguet, F., Olivier, A.H., Lcuyer, A.: CAVE size matters: effects of screen distance and parallax on distance estimation in large immersive display setups. Presence Teleoperators Virtual Environ. 25(1), 1–16 (2016).  https://doi.org/10.1162/PRES_a_00241CrossRefGoogle Scholar
  2. 2.
    Cutting, J.E., Vishton, P.M.: Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. In: Perception of Space and Motion, pp. 69–117 (1995).  https://doi.org/10.1016/B978-012240530-3/50005-5CrossRefGoogle Scholar
  3. 3.
    Dorado, J.L., Figueroa, P., Chardonnet, J.R., Merienne, F., Hernandez, T.: Comparing VR environments for seat selection in an opera theater. In: IEEE Symposium on 3D User Interfaces (3DUI), pp. 221–222 (2017).  https://doi.org/10.1109/3DUI.2017.7893351
  4. 4.
    Fukusima, S.S., Loomis, J.M., Da Silva, J.A.: Visual perception of egocentric distance as assessed by triangulation. J. Exp. Psychol. Hum. Percept. Perform. 23(1), 86–100 (1997).  https://doi.org/10.1037/0096-1523.23.1.86CrossRefGoogle Scholar
  5. 5.
    Gardner, P., Mon-Williams, M.: Vertical gaze angle: absolute height-in-scene information for the programming of prehension. Exp. Brain Res. 136(3), 379–385 (2001).  https://doi.org/10.1007/s002210000590CrossRefGoogle Scholar
  6. 6.
    Grechkin, T.Y., Nguyen, T.D., Plumert, J.M., Cremer, J.F., Kearney, J.K.: How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Trans. Appl. Percept. 7(4), 26:1–26:18 (2010).  https://doi.org/10.1145/1823738.1823744CrossRefGoogle Scholar
  7. 7.
    Howard, J.P., Rogers, B.J.: Stereoacuity. In: Seeing in Depth. University of Toronto Press (2002)Google Scholar
  8. 8.
    Huckauf, A.: Virtual and real visual depth. In: APGV 2005 Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization, p. 172 (2005).  https://doi.org/10.1145/1080402.1080456
  9. 9.
    Iachini, T., Logie, R.: The role of perspective in locating position in a real world, unfamiliar environment. Appl. Cogn. Psychol. 17, 715–732 (2003).  https://doi.org/10.1002/acp.904CrossRefGoogle Scholar
  10. 10.
    Interrante, V., Anderson, L., Ries, B.: Distance perception in immersive virtual environments, revisited. In: Proceedings of the IEEE Conference on Virtual Reality, pp. 3–10 (2006).  https://doi.org/10.1109/VR.2006.52
  11. 11.
    Kelly, J.W., Cherep, L.A., Siegel, Z.D.: Perceived space in the HTC Vive. ACM Trans. Appl. Percept. 15(1), 1–16 (2017).  https://doi.org/10.1145/3106155CrossRefGoogle Scholar
  12. 12.
    Knapp, J.M., Loomis, J.M.: Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence Teleoperators Virtual Environ. 13, 572–577 (2004).  https://doi.org/10.1162/1054746042545238CrossRefGoogle Scholar
  13. 13.
    Kuhl, S., Thompson, T., Creem-Regehr, S.: HMD calibration and its effects on distance judgments. ACM Trans. Appl. Percept. 6(3) (2009).  https://doi.org/10.1145/1577755.1577762CrossRefGoogle Scholar
  14. 14.
    Loomis, J.M., Knapp, J.M.: Visual perception of egocentric distance in real and virtual environments. In: Virtual and Adaptive Environments, pp. 21–46 (2003)Google Scholar
  15. 15.
    Marsh, W.E., Chardonnet, J.-R., Merienne, F.: Virtual distance estimation in a CAVE. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds.) Spatial Cognition 2014. LNCS (LNAI), vol. 8684, pp. 354–369. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11215-2_25CrossRefGoogle Scholar
  16. 16.
    Meng, J., Rieser, J., Bodenheimer, B.: Distance estimation in virtual environments using bisection. In: APGV 2006 Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization, p. 146 (2006).  https://doi.org/10.1145/1140491.1140523
  17. 17.
    Messing, R., Durgin, F.: Distance perception and the visual horizon in head mounted displays. ACM Trans. Appl. Percept. 2(3), 234–250 (2005).  https://doi.org/10.1145/1077399.1077403CrossRefGoogle Scholar
  18. 18.
    Mohler, B., Bülthoff, H., Thompson, W., Creem-Regehr, S.: A full-body avatar improves egocentric distance judgments in an immersive virtual environment. In: APGV 2008 Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, p. 194 (2008).  https://doi.org/10.1145/1394281.1394323
  19. 19.
    Ooi, T.L., Wu, B., He, Z.J.: Distance determined by the angular declination below the horizon. Nature 414, 197–200 (2001).  https://doi.org/10.1038/35102562CrossRefGoogle Scholar
  20. 20.
    Piryankova, I.V., de la Rosa, S., Kloos, U., Bülthoff, H.H., Mohler, B.J.: Egocentric distance perception in large screen immersive displays. Displays 34(2), 153–164 (2013).  https://doi.org/10.1016/j.displa.2013.01.001CrossRefGoogle Scholar
  21. 21.
    Plumert, J., Kearney, J., Cremer, J.: Distance perception in real and virtual environments. In: APGV 2004 Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, pp. 27–34 (2004).  https://doi.org/10.1145/1012551.1012557
  22. 22.
    Renner, R.S., Velichkovsky, B.M., Helmert, J.R.: The perception of egocentric distances in virtual environments - a review. ACM Comput. Surv. 46(2), 23:1–23:40 (2013).  https://doi.org/10.1145/2543581.2543590CrossRefGoogle Scholar
  23. 23.
    Ries, B., Interrante, V., Anderson, L., Lindquist, J.: Presence, rather than prior exposure, is the more strongly indicated factor in the accurate perception of egocentric distances in real world co-located immersive virtual environments. In: APGV 2006 Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization, p. 157 (2006).  https://doi.org/10.1145/1140491.1140534
  24. 24.
    Thompson, W.B., Willemsen, P., Gooch, A.A., Creem-Regehr, S.H., Loomis, J.M., Beall, A.C.: Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence Teleoperators Virtual Environ. 13(5), 560–571 (2004).  https://doi.org/10.1162/1054746042545292CrossRefGoogle Scholar
  25. 25.
    Willemsen, P., Colton, P., Creem-Regehr, S., Thompson, W.: The effects of head mounted display mechanics on distance judgments in virtual environments. In: APGV 2004 Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, pp. 35–38 (2004).  https://doi.org/10.1145/1012551.1012558
  26. 26.
    Willemsen, P., Gooch, A.: Perceived egocentric distances in real, image-based, and traditional virtual environments. In: Proceedings of the IEEE Virtual Reality Conference 2002, p. 275 (2002).  https://doi.org/10.1109/VR.2002.996536
  27. 27.
    Witmer, B.G., Kline, P.B.: Judging perceived and traversed distance in virtual environments. Presence Teleoperators Virtual Environ. 7(2), 144–167 (1998).  https://doi.org/10.1162/105474698565640CrossRefGoogle Scholar
  28. 28.
    Witmer, B.G., Sadowski, W.: Nonvisually guided locomotion to a previously viewed target in real and virtual environments. Hum. Factors 40(3), 478–488 (1998).  https://doi.org/10.1518/001872098779591340CrossRefGoogle Scholar
  29. 29.
    Wu, B., Ooi, T., He, Z.: Perceiving distance accurately by a directional process of integrating ground information. Nature 428, 73–77 (2004).  https://doi.org/10.1038/nature02350CrossRefGoogle Scholar
  30. 30.
    Yang, U., Kim, N.G., Kim, K.H.: Perception adjustment for egocentric moving distance between real space and virtual space with see-closed-type HMD. In: SIGGRAPH Asia 2017, pp. 23:1–23:2 (2017).  https://doi.org/10.1145/3145690.3145721

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mihalache Ghinea
    • 1
  • Dinu Frunză
    • 2
  • Jean-Rémy Chardonnet
    • 3
  • Frédéric Merienne
    • 3
  • Andras Kemeny
    • 3
    • 4
  1. 1.Department of Machines and Manufacturing SystemsUniversity POLITEHNICA of BucharestBucharestRomania
  2. 2.Jaguar Land RoverWarickUK
  3. 3.LiSPEN EA7515, Arts et Métiers, UBFC, HeSam, Institut ImageChalon-sur-SaôneFrance
  4. 4.VR and Immersive Simulation CenterRenaultGuyancourtFrance

Personalised recommendations