Watering Regime Influence on Sustainability of Floristic Structure of Special Nature Reserve “Obedska Bara

  • Vesna NikolićEmail author
  • Dušan Jokanović
Part of the Advances in Global Change Research book series (AGLO, volume 65)


Obedska bara is the greatest flooded area of the river Sava in Serbia and one of the oldest protected natural ares in the world (protected since 1874). It is remain of the left riverbed of the river Sava. The main feature of this area is mixture of different types of wet sites (puddles, swamps, wet meadows, hygrophilous forests, etc.) that are occupied by different plant and animal species of a great national and international importance. Research in this nature reserve is related, before all, to influences between surface waters of the river Sava and Obedska bara on groundwater regime at wider area of this locality. Regime of fillfulling and emphasis of the water defines biocenosis development of this ecosystem. The research is related to period between 2002 and 2011 (10 years long) and obtained results define the state of this aquatic ecosystem.


Watering regime Obedska bara Aquatic ecosystem Groundwater Floristic structure 


  1. Bednarz, Z. (1993, October 18–20). Water deficit limit tree-ring widths of the oak (Quereus robur L.) in the Niepolomice forest, Southern Poland. In Proceedings of the Vth Symposium In A. Szujecki, & P. Paschais (Eds.), The protection of forest ecosystems. Forest ecosystems versus climate change (Bialowieza, Vol. 82, pp. 57–68).Google Scholar
  2. Bobinac, M. (2008). Treatment of hardwoods forests in the area of Ravni Srem. Monographs 250 years of Ravni Srem forestry. Public company Vojvodinašume – management unit Sremska Mitrovica, Petrovaradin (pp. 137–146).Google Scholar
  3. Bobinac, M., Grbić, P., Janjatović, G. & Abjanović, Z. (1997). Thinning measures in young stands of Quercus robur and Fraxinus excelsior at the area of management unit “Sremska Mitrovica”. Šumarstvo 4–5. Belgrade, pp. 33–43.Google Scholar
  4. Bogdanović, Ž. (1982). Hydrological problematic of Srem, Doctoral dissertation. Faculty of nature and mathematics, University of Novi Sad.Google Scholar
  5. Bukurоv, B. (1952). About stratigraphy of quaternary deposits of Vojvodina from dr V. D. Lаskаrеv, Gеоlоški Аnаli Bаlkаnskоg Pоluоstrvа, knjigа XIX, pp. 1–16.Google Scholar
  6. Burlica, Č. (1987). Physical soil properties. Forestry encyclopedia, Sv. III, Zagreb, pp. 479–481.Google Scholar
  7. Ćurčić, S., Đuričić, J., & Marjanović, V. (2002). Municipality of Sremska Mitrovica, geography monographs. Novi Sad: University of Novi Sad, Faculty of Nature and Mathematics.Google Scholar
  8. Dekanić, I. (1974). Influence of level and fluctuations of groundwater on pedunculate oak decline. (Quercus robur L.). Šum. list, 99(7–10), 267–280.Google Scholar
  9. Donaubauer, E. (1998). Die Bedeutung von Krankheitserregern beim gegenwärtigen Eichensterben in Europa – eine Literaturübersicht. European Journal of Forest Pathology, 28, 91–98.CrossRefGoogle Scholar
  10. Dubravac, T., & Dekanić, S. (2009). Structure and dynamics of the harvest of dead and declining trees of pedunculate oak in the stands of Spačva forest from 1996 to 2006. Šumarski list, 133(7–8), 391–405.Google Scholar
  11. Dubravac, T., Dekanić, S., & Roth, V. (2011). Damage dynamics and structure of the oak tree crowns in stands in microelevations and microdepressions – Results from the monitoring on permanent experimental plots. Šumarski list, Zagreb, 125. Posebni broj, 28, 74–89.Google Scholar
  12. Franjić, J., Škvorc, Ž., & Čarni, A. (2006). Distribution of Crataegus nigra Waldst. et Croatia and its importance for forest edge vegetation formation. Šumarski list, 1–2, 3–8.Google Scholar
  13. Führer, E. (1998). Oak decline in Central Europe: Asynopsis of hypotheses. USDA Forest Service General Technical Report, NE-247, 7–24.Google Scholar
  14. Gajić M. & Karadžić D. (1991). Floristic structure of Ravni Srem with a special insight on Obedska bara. Faculty of Forestry in Belgrade and MU “Sremska Mitrovica”. Belgrade – Sremska Mitrovica.Google Scholar
  15. Group of authors. (2008). General management plan for Srem forestry area. Sremska Mitrovica: MU “Sremska Mitrovica”.Google Scholar
  16. Harapin, M., & Androić, M. (1996). Decline and protection of pedunculate oak forest. In D. Klepac (Ed.), Oak pedunculate in Croatia (pp. 227–256). Zagreb: Center for scientific work Vinkovci and forests of Croatia, HAZU.Google Scholar
  17. Hughes, F. M. R. (2007). The importance of flooding regimes in the conservation of floodplain forests. Madrid: International Symposium on River Restoration.Google Scholar
  18. Jokanović, D., & Nikolić, V. (2017). The width of tracheids of the taxodium trees on alluvial sites in Serbia, Šumarstvo 3–4. Belgrade, 189–198.Google Scholar
  19. Jokanović, D., Vilotić, D., Mitrović, S., Miljković, S., Rebić, M., Stanković, D., & Nikolić, V. (2015). Correlations between the anatomical traits of Gymnocladus canadensis Lam. in heartwood and sapwood of early- and latewood zones of growth rings. Archives of Biological Sciences, 67(4), 1399–1404.CrossRefGoogle Scholar
  20. Jokanović, D., Vilotić, D., Nikolić, V., Nonić, M., Devetaković, J., & Stanković, D. (2017). Latewood proportion inside growth rings by bald cypress stems in Serbia. Fresenius Environmental Bulletin, 26(12A), 7925–7930.Google Scholar
  21. Jokanović, D., Vilotić, D., Nikolić, V., Šijačić-Nikolić, M., Lakušić, B., & Jović, Đ. (2018). Growth rings width of bald cypress stems from two alluvial sites in Serbia. Fresenius Environmental Bulletin, 27(1), 306–312.Google Scholar
  22. Josipović, J. & Soro, A. (2012). Groundwaters of Vojvodina, Monographs, Institute for waterpower engineering “Jaroslav Černi” Belgrade.Google Scholar
  23. Jurišić, B. (2015). Diversity of vascular flora of lowland forests of Ravni Srem. Doctoral dissertation, Biological Faculty of Belgrade University, pp. 1–490.Google Scholar
  24. Krahl-Urban, J., Llesh, J., & Schwf.rtfeger, F. (1944). Das Eichensterben im Forstamt Flellefeld. Zeitsehr. f.d. gesamte Forstwesen, 76/70, 70–86.Google Scholar
  25. Letić, L. J., Ivanišević, P., & Rončević, S. (2006). Watering regime influence on poplar growth. Bulletin of Faculty of Forestry, University of Belgrade – Faculty of Forestry, Belgrade, 93, 105–119.Google Scholar
  26. Letic, L. J., Sаvić, R., Nikоlić, V., & Lоzјаnin, R. (2014). Effects of reclamation works on the state of pedunculate oak forests in Ravni Srem. Šumаrstvо, 3–4, 117–130.Google Scholar
  27. MarclI, G. (1966). Studial Cauzelor si al Metodclor de Prevenlre si Combatere a Uscarii Stejarului. Bucharest: Centrul de Doeumentare Tehniea pentru Economia Forestiera 582.Google Scholar
  28. Mayer, B. (1987). Regime of groundwater and surface water in the soils of lowland forests of basen Pokupski in period 1981–1986. Final study case, Forestry Institute Jastrebarsko – Zagreb, pp. 1–139.Google Scholar
  29. Mayer, B. (1989). Ecological importance of underground and surface water regime for lowland forests of basen Pokupski. Doctoral dissertation, Faculty of Forestry, Zagreb.Google Scholar
  30. Mayer, B. (1994). Effects of soil watering dynamics, groundwater, precipitation and defoliation on seasonal dynamics of radial increment and decline of pedunculate oak (Quercus robur L.) in Varoški lug. Forestry Institute, 29(1), 83–102.Google Scholar
  31. Mayer, B. (1995). Underground and surface water in the lowland forest Turopoljski lug in period 1989–1993. Forestry Institute, 30(1), 47–73.Google Scholar
  32. Mayer, B. (1996). Hydropedological relations in the area of lowland forests of basen Pokupski. Forestry Institute, 31(1/2), 37–89.Google Scholar
  33. Medarević, M., Banković, S., Cvetković, Đ., & Abjanović, Z. (2009). Problem of forest dying in Gornji Srem. Šumarstvo, 61, br. 3–4–str. 61–73.Google Scholar
  34. Milutinović R. & Vajda LJ. (2000). Obedska bara and growing of hydroenergetic system Đerdap – I, Vodoprivreda 183–185, god. 32, JDP, Beograd, pp. 229–236.Google Scholar
  35. Mitrović, S., Jokanović, D., Vilotić, D., Miljković, D., Veselinović, M., & Stanković, D. (2017). Stomata characteristics of two Paulownia species under different conditions of light. Fresenius Environmental Bulletin, 26(3), 1876–1882.Google Scholar
  36. Nikić, Z., Lеtić, L., Nikоlić, V., & Filipоvić, V. (2010). Procedure for underground water calculation regime of pedunculate oak habitat in plain Srem. Bulletin of Faculty of Forestry, University of Belgrade – Faculty of Forestry, Belgrade, 101, 125–138.Google Scholar
  37. Nikić, Z., Srećković Batoćanin, D., Burazer, M., Ristić, R., Papić, P., & Nikolić, V. (2013). Conceptual model of mildly alkaline water discharging from the Zlatibor ultramafic massif, western Serbia. Hydrogeology Journal Official Journal of the International Association of Hydrogeologists, 21(5), 1147–1161.Google Scholar
  38. Nikolić, V., Letić, L. J., & Savić, R. (2012). Effects of watering regime of the river Sava on aquatic ecosystem of Obedska bara, Proceedings Melioracije 12, University of Novi Sad, Faculty of Agriculture, Department for water management, pp. 23–29.Google Scholar
  39. Nikоlić, V. (2017). Watering regime influence on site characteristics of pedunculate oak (Quercus robur L.) in Ravni Srem. Doctoral dissertation, Faculty of Forestry, Belgrade University.Google Scholar
  40. Pranjić, A., & Lukić, N. (1989). Increment of pedunculate oak stems as indicator of site changes. Glas.šum. pokuse, 25, 79–94.Google Scholar
  41. Prpić, B. (1976). Response of pedunculate oak (Quercus robur L.) from two different sites on different wetting conditions. Šum. List., 100(3), 117–123.Google Scholar
  42. Prpić, B. (1996). Devastation of pedunculate oak forests. In D. Klepac (Ed.), Quercus robur in Croatia (pp. 273–298). Zagreb: HAZU Center for scientific work Vinkovci and Croatia forests.Google Scholar
  43. Prpić, B., Seletković, Z., & Žnidarić, G. (1994). Ecological and biological causes of pedunculate oak (Quercus robur L.) stems dying in the lowland forest Turopoljski lug. Glas. šum. pokuse, 30, 193–222.Google Scholar
  44. Rahmanov, V. V. (1984). Hydroclimatic rule of forests (in Russian), Leshnaya promyshlennost. Moscow: Forest Industry Publ 204.Google Scholar
  45. Savic, R., Ondrasek, G., Bezdan, A., Lj, L., & Nikolic, V. (2013). Fluvial deposition in groyne fields of the middle course of Danube river. Journal Tehnički vjesnik/Technical Gazette, 20(6), 979–983.Google Scholar
  46. Šijačić-Nikolić, M., Vilotić, D., Veselinović, M., Mitrović, S., & Jokanović, D. (2011). Bald cypress (Taxodium distichum (L.) Rich.) in the area of protected nature reserve Veliko ratno ostrvo. Bulletin of Faculty of Forestry, Belgrade, 103, 173–184.CrossRefGoogle Scholar
  47. Siwecki, R. (1989). A decline of oak forests caused by abiotic factors and attempts at biological research on this syndrome. Arboretum Korniekie, 34, 161–169.Google Scholar
  48. Siwecki, R. (1993). Global climatic change and oak decline. In A. Szuji’cki & P. Pascilalis (Eds.), Proe. of 5th Symp. the Proteetion of Forest Ecosystems – Forest Ecosystems Versus Climate Change, Bialowieza, 18–20 Oct., 1993 (pp. 69–83). Warszawa: IBL.Google Scholar
  49. Siwecki, R. (1995). Syndrom zamierama dcjbow na Plycie Krotoszyriskiej. Quereus sp. OKL Goluchc)w. pp. 10–14.Google Scholar
  50. Siwecki, R. & Llese, W. (1991). Oak deeline in Europe. In Proceedings of the International IUFRO Symposium, Kornik, Poland, 15–18 May 1990. Poznan: Panstwowe Wydawnietwo Rolnieze i Lesne, p. 360.Google Scholar
  51. Siwecki, R., & Ufnalski, K. (1998). Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Forest Pathology, 28, 99–112.CrossRefGoogle Scholar
  52. Sperduto, D. D., & Nichols, W. F. (2004). Natural communities of New Hampshire. New Hampshire: The NH Natural Heritage Bureau and The Nature Conservancy.Google Scholar
  53. Stanković, D., Jokanović, D., Veselinović, M., Letić, Lj., Jović, Đ., &Karić, D. (2015). Zinc concentration in woody and herbaceous plants at Kosmaj area, Fresenius Environmental Bulletin, Freising-Germany Fresenius Environmental Bulletin, 24(11), 3672–3675.Google Scholar
  54. Stanković, D., Ivetić, V., Ocokoljić, M., Jokanović, D., Oljača, R., & Mitrović, S. (2015b). Manganese concentration in plants of the protected natural resource, Kosmaj, in Serbia. Archives of Biological Sciences, Belgrade, 67(1), 251–255.CrossRefGoogle Scholar
  55. Steiner, K. C. (1998). A decline-model interpretation of genetic and habitat structure in oak populations and its implications for silviculture. European Journal of Forest Pathology, 28, 113–120.CrossRefGoogle Scholar
  56. Stevanović, V. (2012). Classification of living forms in Serbian flora, “Flora SR Srbije I” (pp. 39–42). Belgrade: Serbian Academy of Science and Art.Google Scholar
  57. Stojanović, V., Pavić, D., & Mesaroš, M. (2008). The use of natural assets of reeds marshland in Vojvodina in view of sustainable development. Zbornik Matice srpske za prirodne nauke Novi Sad, 115, 109–116.CrossRefGoogle Scholar
  58. Thomas, F. M., Blank, R., & Hartman, G. (2002). Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology, 32, 277–307.CrossRefGoogle Scholar
  59. Tomić, Z. (2004). Forest phytocenology. Faculty of Forestry, Belgrade University.Google Scholar
  60. Tomić, Z., & Rakonjac, L. J. (2013). Forest plant associations of Serbia. Belgrade: University “Singidunum”, Faculty for applied ecology “Futura” and Institute of Forestry.Google Scholar
  61. Vajda, Z. (1948). Effects of climate fluctuations on oak pedunculated decline from lowland forests in Posavina and Donja Podravina area. Zagreb: Institute for forestry research of Forestry Ministry of Republic of Croatia 154.Google Scholar
  62. Veljković, N., & Jovičić, M.. (2010). Long-term trend of water quality of aquatic area of Sava, 39, Conference about using and protection of water “Water 2010”, Serbian society for water protection and Institute for waterpower engineering “Jaroslav Černi”, Divčibare, Srbija, pp. 69–72.Google Scholar
  63. Veselinović, M., Vilotić, D., Mitrović, S., Čule, N., Stanković, D., Jokanović, D., & Madzgalj, J. (2017). Air pollutant effects on chlorenchyma cell and chloroplasts of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) needles. Fresenius Environmental Bulletin, 26(3), 1974–1979.Google Scholar
  64. Vilhar, U. Š., & Fajon. (2007). Vpliv gozda in gozdnogojitvenih ukrepov na hidrološki režim vodozbirnega območja. In M. Kovač (Ed.), Gozd in voda (Gozdarski inštitut Slovenije) (pp. 16–21). Ljubljana: Zavod za gozdove Slovenije.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ForestryUniversity of BelgradeBelgradeSerbia

Personalised recommendations