Effect of Climate Change on the High-Mountain Tree Species and Their Genetic Resources in Bulgaria

  • Momchil PanayotovEmail author
  • Nickolay Tsvetanov
  • Evgeni Tsavkov
  • Georgi Gogushev
  • Peter Bebi
  • Petar Zhelev
  • Stefan Yurukov
Part of the Advances in Global Change Research book series (AGLO, volume 65)


Climate change have the potential to strongly affect mountain coniferous forests in Bulgaria in several ways: (1) By directly affecting tree growth and the potential of trees to successfully cope with climate extremes; (2) By affecting disturbance events and regimes, which on their turn may trigger further habitat changes; (3) By facilitating migration of better adapted for the new climate condition species, which can outcompete other less adapted species and replace them and (4) By facilitating invasive species. In this chapter we provide data on the distribution of coniferous forests in Bulgarian mountains and short reviews of recent tree ring studies and studies on disturbance regimes. The tree ring data show the high importance of drought and other extreme climate events on high-mountain conifer species. This outlines that expected summer warming and temperature increase have the potential to strongly affect tree growth. The disturbance data shows the high importance of fires and windthrows, but also high number of snow damages and avalanches, which are not to be neglected. Insect outbreaks may be further facilitated if summer temperatures increase and allow species, which are currently limited by colder temperatures in higher altitudes, to affect also forests higher up. All these factors can act together and modify habitat quality and conditions and in this way put in risk species and genotypes with limited distribution and narrow growth niches. It is therefore necessary to take measures for ex-situ conservation of genotypes besides the well developed in-situ conservation in the network of protected areas in Bulgaria.


Mountain coniferous forests Disturbance Tree –ring studies Climate change 



Most of the studies reported in this chapter were performed within the framework of a Swiss-Bulgarian Project “Subalpine forest development in Bulgarian mountain forests under climate change” supported by Swiss National Science Fund (project IZEBZO143109). Part of the study was supported also by the project “Integrated Research on Forest Resilience and Management in the Mediterranean (INFORMED)”.


  1. Alexandrov, A., & Dobrev R. (2011). The state of the world’s forest genetic resources. (Country Report Bulgaria, 60 pp). Rome: FAO.Google Scholar
  2. Alexandrov, A., & Pandeva, D. (2014). Acer heldreichii. In Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie (pp. 1–6).Google Scholar
  3. Alexandrov, A., von Wühlisch, G., & Vendramin, G. G. (2011). Conserving the genetic diversity of Pinus mugo Turra. Silva Balcanica, 12(1), 5–11.Google Scholar
  4. Anev, S. (2016). Physiological basis of growth, adaptation and survival. In M. Panayotov, P. Bebi, & S. Yurukov (Eds.), Mountain coniferous forests in Bulgaria – structure and natural dynamics (pp. 79–96). Sofia: University of Forestry ISBN: 978-954-332-146-9.Google Scholar
  5. Anev, S., & Tsvetkova, N. (2018). Drought stress in four subalpine species: Gas exchange response and survivorship. Russian Journal of Ecology, 49(5), 422–427.CrossRefGoogle Scholar
  6. Assyov, B., Petrova, A., Dimitrov, D., & Vassilev, R., 2012. Conspectus of the Bulgarian vascular flora. Distribution maps and floristic elements (4th Revised and enlarged edition, 489 pp). Sofia: Bulgarian Biodiversity Foundation.Google Scholar
  7. Bebi, P., Kulakowski, D., & Rixen, C. (2009). Snow avalanche disturbances in forest ecosystems—state of research and implications for management. Forest Ecology and Management, 257, 1883–1892.CrossRefGoogle Scholar
  8. Bergman, F., & Gagov, V. (2000). Genetische Diversität und Differenzierung von Tannenpopulationen der Balkanhalbinesel. In Proceedings of the 9th International European Silver Fir Symposium in Skopje, Macedonia.Google Scholar
  9. Bradford, J. B., Jensen, N. R., Domke, G. M., & D’Amato, A. W. (2013). Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks. Forest Ecology and Management, 308, 178–187.CrossRefGoogle Scholar
  10. Brown, R. D., & Petkova, N. (2007). Snow cover variability in Bulgarian mountainous regions, 1931–2000. International Journal of Climatology, 27(9), 1215–1229.CrossRefGoogle Scholar
  11. Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., Wilson, R., & Zang, C. (2015). Old world megadroughts and pluvials during the Common Era. Science Advances, 1(10), e1500561. Scholar
  12. Dobrinov, I., & Yurkov, S. (1986). Studies on the progeny of natural hybrids between Pinus sylvestris and P. mugo. Scientific Works, Higher Institute of Forestry, Series Forestry, 30, 123–138 (in Bulgarian).Google Scholar
  13. Doncheva, N., Gagov, V., & Zhelev, P. (2003). Individual heterozygosity distribution in natural Scots pine (Pinus sylvestris L.) populations. Genetics and Breeding, 32(1–2), 61–67.Google Scholar
  14. Dountchev, A., & Zhelev, P. (2015). Natural regeneration on the Norway spruce forests after large-scale natural disturbances in Bistrishko branishte reserve, Vitosha Mts. Forestry Ideas, 21(2), 293–305.Google Scholar
  15. Dountchev, A., Tsvetanov, N., Zhelev, P., & Panayotov, M. (2014). Challenges for the conservation of the Norway spruce forests in Vitosha Nature Park after large-scale natural disturbances. Ecologia Balkanica, 5, 61–69.Google Scholar
  16. Foster, D. R., Knight, D. H., & Franklin, J. F. (1998). Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems, 1, 497–510.CrossRefGoogle Scholar
  17. Gagov, V., Zhelev, P., Evtimov, I., & Doncheva, N. (2003). Genetic structure of seed production stands and clonal seed orchards of Scots Pine. Project Report. University of Forestry, 145 pp (in Bulgarian).Google Scholar
  18. Gömöry, D., Paule, L., Brus, R., Zhelev, P., Tomović, Z., & Gračan, J. (1999). Genetic differentiation and phylogeny of beech on the Balkan Peninsula. Journal of Evolutionary Biology, 12(4), 746–754.CrossRefGoogle Scholar
  19. Grozev, O., & Nedelchev, N., (1996). Comparative dendrochronological analysis of Austrian pine and Scots pine from the region of western Rhodopes. Scientific works of the University of Forestry, XXXVII, Forestry, 81–88 (in Bulgarian).Google Scholar
  20. Grunewald, K., Scheithauer, J., Monget, J.-M., & Brown, D. (2009). Characterisation of contemporary local climate change in the mountains of southwest Bulgaria. Climatic Change, 95(3–4), 535–549.CrossRefGoogle Scholar
  21. IPCC. (2014). In R. K. Pachauri & L. A. Meyer (Eds.), Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 151). Geneva: IPCC.Google Scholar
  22. Kraus, D., & Krumm, F. (2013). Integrative approaches as an opportunity for the conservation of forest biodiversity. Freiburg: European Forest Institute.Google Scholar
  23. Kulakowski, D., & Bebi, P. (2004). Range of variability of unmanaged subalpine forests. Forum für Wissen, 2004, 47–54.Google Scholar
  24. Kulakowski, D., Seidl, R., Holeksa, J., Kuuluvainen, T., Nagel, T., Panayotov, M., Svoboda, M., Thorn, S., Vacchiano, G., Whitlock, C., Wohlgemuth, T., & Bebi, P. (2017). A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecology and Management, 388, 120–131.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Landres, P. B., Morgan, P., & Swanson, F. J. (1999). Overview of the use of natural variability concepts in managing ecological systems. Ecological Applications, 9(4), 1179–1188.Google Scholar
  26. Longauer, R., Zhelev, P., Paule, L., & Gömöry, D. (1992). The mating system, outcrossing rate and genetic differentiation of Scots pine (Pinus sylvestris L.) populations from Bulgaria. Biologia (Bratislava), 47(7), 539–547.Google Scholar
  27. Mirchev, P., Georgiev, G. T., Tsankov, G. (2004). Economically important insect pests in the pine forests in Bulgaria. In Proceedings of the Third Symposium on “Deliblato Sands”, Pancevo, Serbia, pp. 223–228.Google Scholar
  28. Mirchev, P., Georgiev, G. T., & Matova, M. (2011). Prerequisites for expansion of Pine processionary moth, Thaumetopoea pityocampa (Den. & Schiff.) in Bulgaria. Journal of Balkan Ecology, 14(2), 117–130.Google Scholar
  29. Naydenov, K. D., Tremblay, F. M., Bergeron, Y., Alexandrov, A. H., & Fenton, N. (2005). Dissimilar patterns of Pinus heldreichii Christ. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis. Biochemical Systematics and Ecology, 33(2), 133–148.CrossRefGoogle Scholar
  30. Nojarov, P. (2012). Variations in precipitation amounts, atmosphere circulation, and relative humidity in high mountainous parts of Bulgaria for the period 1947–2008. Theoretical and Applied Climatology, 107(1–2), 175–187.CrossRefGoogle Scholar
  31. Oliver, C. D., & Larson, B. C. (1996). Forest stand dynamics. New York: Wiley 544 pp.Google Scholar
  32. Panayotov, M., & Georgiev, D. (2012). Dynamics in the Ips typographus outbreak following the 2001 windthrow in Bistrishko branishte reserve, Bulgaria. Silva Balcanica, 13(1), 38–48.Google Scholar
  33. Panayotov, M., & Yurukov, S. (2007). Tree ring chronology from Pinus peuce in Pirin Mts and the possibilities to use it for climate analysis. Phytologia Balcanica, 13(3), 313–320.Google Scholar
  34. Panayotov, M., Bebi, P., Trouet, V., & Yurukov, S. (2010). Climate signal in tree-ring chronologies of Pinus peuce and Pinus heldreichii from the Pirin Mountains in Bulgaria. Trees – Structure and Function, 24(3), 479–490.CrossRefGoogle Scholar
  35. Panayotov, M., Kulakowski, D., Laranjeiro Dos Santos, L., & Bebi, P. (2011). Wind disturbances shape old Norway spruce forests in Bulgaria. Forest Ecology and Management, 262(3), 470–481.CrossRefGoogle Scholar
  36. Panayotov, M., Zafirov, N., & Cherubini, P. (2013). Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria. Trees - Structure and Function, 27(1), 211–227.CrossRefGoogle Scholar
  37. Panayotov, M., Bebi, P., Tsvetanov, N., Alexandrov, N., Laranjeiro, L., & Kulakowski, D. (2015). The disturbance regime of Norway spruce forests in Bulgaria. Canadian Journal of Forest Research, 45(9), 1143–1153.CrossRefGoogle Scholar
  38. Panayotov, M., Kulakowski, D., Tsvetanov, N., Krumm, F., Barbeito, I., & Bebi, P. (2016a). Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. Forest Ecology and Management, 369, 74–88.CrossRefGoogle Scholar
  39. Panayotov, M., Tsvetanov, N., Gogushev, G., Tsavkov, E., Zlatanov, T., Anev, S., Ivanova, A., Nedelin, T., Zafirov, N., Aleksandrov, N., Dountchev, A., Vasileva, P., Shishkova, V., Stoyanov, B., Sotirova, N., Vatov, A., Bebi, P., & Yurukov, S., 2016b. Mountain coniferous forests in Bulgaria – Structure and natural dynamics. Sofia: University of Forestry, 332 рр. ISBN: 978-954-332-146-9.Google Scholar
  40. Panayotov, M., Gogushev, G., Tsavkov, E., Vasileva, P., Tsvetanov, N., Kulakowski, D., & Bebi, P. (2017). Abiotic disturbances in Bulgarian mountain coniferous forests – An overview. Forest Ecology and Management, 388, 13–28.CrossRefGoogle Scholar
  41. Raev, I., Knight, C., & Staneva, M. (2003). Drought in Bulgaria – A contemporary analogue for climate change – Natural, economical and social aspects of the dry period 1982–1994. Sofia: BAS.Google Scholar
  42. Raev, I., Zhelev, P., Grozeva, M., Markov, N., Velichkov, I., Zhiyanski, M., Georgiev, G., Miteva, M., Aleksander A., Trichkov, L., Bardarov, D., & Vasilev, N. (2011). Programme of measures for adaptation of the forests in Republic of Bulgaria and mitigation the negative effects of the climate change on them. Executive Forest Agency, Ministry of Agriculture, Food and Forests.Google Scholar
  43. Rangelova, P., & Panayotov, M. (2013). Structure of old-growth Pinus heldreichii forests in Pirin Mountains. Bulgarian Journal of Agricultural Science, 19(2), 273–276.Google Scholar
  44. Roussakova, V. (2015a). Green alder (Alnus viridis) mountain brush. In V. Bisserkov (Ed.), Red data book of Bugaria (Natural habitats, Vol. 3, pp. 233–235). Sofia: MoEW and IBER-BAS.Google Scholar
  45. Roussakova, V. (2015b). King Boris’s fir (Abies alba subsp. borisii-regis) forests. In V. Bisserkov (Ed.), Red data book of Bugaria (Natural habitats, Vol. 3, pp. 345–346). Sofia: BAS and MoEW.Google Scholar
  46. Russkoff, M. (1928). Contribution to the study of damages by insects in our forests. Gorski pregled (Forest review), 11–12, 477–490 (in Bulgarian).Google Scholar
  47. Scaltsoyiannes, A., Tsaktsira, M., Pasagiannis, G., Tsoulpha, P., Zhelev, P., Iliev, I., & Rohr, R. (2009). Allozyme variation of European Black (Pinus nigra Arnold) and Scots pine (Pinus sylvestris L.) populations and implications on their evolution: A comparative study. Journal of Biological Research (Thessaloniki), 11, 95–106.Google Scholar
  48. Schelhaas, M.-J., Nabuurs, G.-J., & Schuck, A. (2003). Natural disturbances in the European forests in the19th and 20th centuries. Global Change Biology, 9(11), 1620–1633.CrossRefGoogle Scholar
  49. Seidl, R., Schelhaas, M.-J., & Lexer, M. J. (2011). Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17(9), 2842–2852.CrossRefGoogle Scholar
  50. Seidl, R., Schelhaas, M.-J., Rammer, W., & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4, 806–810.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shishkova, V., & Panayotov, M. (2013). Climate-growth relationship of Pinus nigra tree-ring width chronology from the Rhodope Mountains, Bulgaria. Bulgarian Journal of Agricultural Science, 19(2), 225–228.Google Scholar
  52. Slavov, G. T., & Zhelev, P. (2004). Allozyme variation, differentiation, and inbreeding in populations of Pinus mugo in Bulgaria. Canadian Journal of Forest Research, 34(12), 2611–2617.CrossRefGoogle Scholar
  53. Tashev, A., & Tsavkov, E. (2017). Validation of the name Quercus protoroburoides (Fagaceae). Phytotaxa, 308(2), 232–238.CrossRefGoogle Scholar
  54. Tashev, A., Koev, K., Tashev, N., & Georgiev, S. (2013). New data on the vertical distribution of some arboreal species of the flora in Bulgaria. Forestry Ideas, 19(2), 201–207.Google Scholar
  55. Temperli, C., Bugmann, H., & Elkin, C. (2013). Cross-scale interactions among bark beetles, climate change, and wind disturbances: A landscape modeling approach. Ecological Monographs, 83(3), 383–402.CrossRefGoogle Scholar
  56. Thom, D., & Seidl, R. (2015). Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews, 91(3), 760–781.CrossRefPubMedGoogle Scholar
  57. Thom, D., Seidl, R., Steyrer, G., Krehan, H., & Formayer, H. (2013). Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. Forest Ecology and Management, 307, 293–302.CrossRefGoogle Scholar
  58. Trouet, V., Panayotov, M., Ivanova, A., & Frank, D. (2012). A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (ad 1768–2008). The Holocene, 22(8), 887–898.CrossRefGoogle Scholar
  59. Vacchiano, G., Maggioni, M., Perseghin, G., & Motta, R. (2015). Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest. Cold Regions Science and Technology, 115, 9–21.CrossRefGoogle Scholar
  60. Veblen, T. T. (2003). Historic range of variability of mountain forest ecosystems: Concepts and applications. Forestry Chronicle, 79(2), 223–226.CrossRefGoogle Scholar
  61. Zafirov, N. (2016). Study of the health status of coniferous forests. In M. Panayotov, P. Bebi, & S. Yurukov (Eds.), Mountain coniferous forests in Bulgaria – structure and natural dynamics (pp. 137–150). Sofia: University of Forestry.Google Scholar
  62. Zashev, B. (1950). On the biology and ecology of the engraver beetle Ips acuminatus Gyll in Bulgaria. Annuaire of the Agricultural Academy, Faculty of Forestry, 3, 356–361 (in Bulgarian).Google Scholar
  63. Zhelev, P., & Slavov, G. T. (2002). Genetic differentiation of Pinus mugo in Bulgaria: Importance for gene conservation. In D. Temniskova (Ed.), Proceedings of the Sixth National Conference of Botany, pp. 467–472 (in Bulgarian).Google Scholar
  64. Zhelev, P., & Tsarska, A. (2009). Genetic diversity in the Bulgarian populations of Pinus peuce Grsb. In: D. Noshad, E. W. Noh, J. King, & R.A. Sniezko (Eds.), Breeding and genetic resources of five-needle pines. Proceedings of the Conference 2008 (pp. 10–16). Yangyang: Korea Forest Research Institute.Google Scholar
  65. Zhelev, P., Longauer, R., Paule, L., & Gömöry, D. (1994). Genetic structure of indigenous Scots pine populations from Rhodopi Mountains. Nauka za Gorata (Bulgarian Forest Science), 3, 68–76.Google Scholar
  66. Zlatanov, T., Elkin, C., Irauschek, F., & Lexer, M. (2017). Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Regional Environmental Change, 17(1), 79–91.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Momchil Panayotov
    • 1
    Email author
  • Nickolay Tsvetanov
    • 1
  • Evgeni Tsavkov
    • 1
  • Georgi Gogushev
    • 2
  • Peter Bebi
    • 3
  • Petar Zhelev
    • 1
  • Stefan Yurukov
    • 1
  1. 1.University of ForestrySofiaBulgaria
  2. 2.Regional Forestry Directorate – BlagoevgradBlagoevgradBulgaria
  3. 3.WSL Institute for Snow and Avalanche Research SLFDavosSwitzerland

Personalised recommendations