Advertisement

Serbian Spruce and Climate Change: Possible Outcomes and Conservation Strategy

  • Vladan Ivetić
  • Jelena M. Aleksić
Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 65)

Abstract

Serbian spruce is an old, relict and currently rare and endangered spruce species particularly susceptible to climate change that attracts a lot of attention in the academic community since its discovery in 1875. Today, Serbian spruce is limited to the area of ~100 km2 localized around the mid-course of the Drina River in the mountainous central Balkans, at the border of Republic of Serbia and Republic of Srpska, Bosnia and Herzegovina. Within this small area, ~30 remnant populations of various sizes are scattered at north-to-northwest orientated slopes of hills. Given the current state of Serbian spruce populations as well as extreme climate events and poor natural regeneration in this species, applied “do not touch” conservation approach is severely questioned, and some alternative protection and in situ and ex situ conservation actions have been put forward. In situ actions should involve: (1) facilitation of natural regeneration by selective removal of individual competitor trees, (2) assisted natural regeneration by planting high quality seedlings throughout the species current natural range or at nearby suitable sites, and (3) assisted natural regeneration by direct seeding. Although in situ actions may provide short-term persistence of Serbian spruce, ex situ actions, i.e., assisted migration, achieved by both assisted range expansion and assisted species migration, are inevitable, since it is very likely that Serbian spruce will disappear from its natural habitats in the near future due to the rapid climate change.

Keywords

Serbian spruce Picea omorika Climate change Assisted migration 

References

  1. Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: Climatic changes outcomes for tree populations. Evolutionary Applications, 1, 95–111.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aleksić, M. J. (2008). Genetic structure of natural populations of Serbian spruce [Picea omorika (Panč.) Purk.]. Dissertation, University of Natural Resources and Applied Life Sciences, Vienna, Austria.Google Scholar
  3. Aleksić, M. J., & Geburek, T. (2010). Mitochondrial DNA reveals complex genetic structuring in a stenoendemic conifer Picea omorika [(Panč.) Purk.] caused by its long persistence within the refugial Balkan region. Plant Systematics and Evolution, 285, 1–11.  https://doi.org/10.1007/s00606-009-0250-0.CrossRefGoogle Scholar
  4. Aleksić, M. J., & Geburek, T. (2014). Quaternary population dynamics of an endemic conifer, Picea omorika, and their conservation implications. Conservation Genetics, 15, 87–107.  https://doi.org/10.1007/s10592-013-0523-6.CrossRefGoogle Scholar
  5. Aleksić, M. J., Schueler, S., Mengl, M., & Geburek, T. (2009). EST-SSRs developed for other Picea species amplify in Picea omorika and reveal high genetic variation in two natural populations. Belgian Journal of Botany, 142, 89–95.Google Scholar
  6. Aleksić, J. M., Ballian, D., Isajev, D., Mataruga, M., Christian, T., Gardner, M. (2017a). Picea omorika. The IUCN Red List of Threatened Species 2017: e.T30313A84039544.  https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T30313A84039544.en. Downloaded on 12 December 2017.
  7. Aleksić, J. M., Piotti, A., Geburek, T., & Vendramin, G. G. (2017b). Exploring and conserving a “microcosm”: Whole-population genetic characterisation within a refugial area of the endemic, relict conifer Picea omorika. Conservation Genetics, 18(4), 777–788.CrossRefGoogle Scholar
  8. Atondo-Bueno, E. J., López-Barrera, F., Bonilla-Moheno, M., Williams-Linera, G., & Ramírez, N. (2016). Direct seeding of Oreomunnea mexicana, a threatened tree species from Southeastern Mexico. New Forests, 47, 845–860.  https://doi.org/10.1007/s11056-016-9548-2.CrossRefGoogle Scholar
  9. Ballian, D., Longauer, R., Mikić, T., Paule, L., Kajba, D., & Gömöry, D. (2006). Genetic structure of a rare European conifer, Serbian spruce (Picea omorika (Pančić) Purk.). Plant Systematics and Evolution, 260, 53–63.  https://doi.org/10.1007/s00606-006-0431-z.CrossRefGoogle Scholar
  10. Bouillé, M., Senneville, S., & Bousquet, J. (2011). Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genetics & Genomes, 7(3), 469–484.CrossRefGoogle Scholar
  11. Cejpek, J., Kuráž, V., & Frouz, J. (2013). Hydrological properties of soils in reclaimed and unreclaimed sites after brown-coal mining. Polish Journal of Environmental Studies, 22(3), 645–652.Google Scholar
  12. Čolić, D. (1951). Šumski rezervati Picea omorica Pančić = Forest reserves of Picea omorica Pančić. – Šumarstvo, IV (1); 20–34. Summ.Google Scholar
  13. Čolić, D. (1957). Neki pionirski karakteri Pančićeve omorike i njena uloga u sukcesiji biljnih zajednica. Archives des Sciences Bioloqiques, 9(1–4), 51–60 (in Serbian with English and German summary).Google Scholar
  14. Čolić, D. (1959). Prilog poznavanju ekologije vegetativnog razmnožavanja Pančićeve omorike (Picea omorika Panč). Archive Bioloških Nauka, Beograd, 11(1–4), 41–66.Google Scholar
  15. Čolić, D. (1987). Spontana obnova Pančićeve omorike (Picea omorika Panč.) posle požara. Zaštita Prirode, 40, 37–56.Google Scholar
  16. Conifer Specialist Group. (1998). Picea omorika. In IUCN 2007. 2007 IUCN Red list of threatened species.Google Scholar
  17. Cvetkovic, B., Mataruga, M., Isajev, V., Levic, J., Lucic, A., Trkulja, V., & Kremenovic, Z. (2013). Variability in germination and germination dynamics of differently treated seeds of Serbian spruce (Picea omorika Pančić/Purkynĕ). Genetika, 45(1), 109–119.CrossRefGoogle Scholar
  18. David, A. J., & Keathley, D. E. (1996). Inheritance of mitochondrial DNA in interspecific crosses of Picea glauca and Picea omorika. Canadian Journal of Forest Research, 26(3), 428–432.  https://doi.org/10.1139/x26-048.CrossRefGoogle Scholar
  19. Dizdarević, M., Lakušić, R., Grgić, P., Kutleša, L., Pavlović, B., & Jonlija, R. (1984). Ekološke osnove poimanja reliktnosti vrste Picea omorika Pančić. Bilten Društva ekologa Bosne i Herzegovine, Ser A, 2, 5–56 (in Bosnian with English abstract).Google Scholar
  20. Dumroese, R. K., Williams, M. I., Stanturf, J. A., & St Clair, J. B. (2015). Considerations for restoring temperate forests of tomorrow: Forest restoration, assisted migration, and bioengineering. New Forest, 46, 947–964.  https://doi.org/10.1007/s11056-015-9504-6.CrossRefGoogle Scholar
  21. Dumroese, R. K., Landis, T. D., Pinto, J. R., Haase, D. L., Wilkinson, K. W., & Davis, A. S. (2016). Meeting forest restoration challenges: Using the target plant concept. Reforesta, 1, 37–52.CrossRefGoogle Scholar
  22. Finsinger, W., Morales-Molino, C., Gałka, M., Valsecchi, V., Bojovic, S., & Tinner, W. (2017). Holocene vegetation and fire dynamics at Crveni Potok, a small mire in the Dinaric Alps (Tara National Park, Serbia). Quaternary Science Reviews, 167, 63–77.CrossRefGoogle Scholar
  23. Fowler, D. P. (1980). Hybridization of black spruce and Serbian spruce. Can For Serv Marit For Cent Inf Rep M-X-112.Google Scholar
  24. Fukarek, P. (1956). Zaštita endemne Pančićeve omorike u NR Bosni i Hercegovini. Godišnjak Zemaljskog zavoda za zaštitu spomenika kulture i prirodnih rijetkosti NR Bosne i Hercegovine. Naše starine, III, 289–298.Google Scholar
  25. Fukarek, P. (1967). Pančićevo otkriće omorike i njeno dalje proučavanje. In Josifović M (Ed.), Pančićev zbornik u spomen 150-godišnjice njegovog rođenja. Srpska Akademija Nauka i Umetnosti, Odeljenje prirodno-matematičkih nauka, Beograd (pp. 27–67).Google Scholar
  26. Gajić, M., Vilotić, D., Karadžić, D., Mihajlović, L., & Isajev, V. (1994). Serbian spruce—Picea omorika (Pančić) Purkynĕ on the territory of the National Park Tara. Belgrade: The National Park Tara, Bajina Bašta and the Faculty of Forestry (in Serbian).Google Scholar
  27. Geburek, T. (1986). Some results of inbreeding depression in Serbian spruce (Picea omorica (Panč.) Purk.). Silvae Genetica, 35, 169–172.Google Scholar
  28. Gray, L. K., & Hamann, A. (2011). Strategies for reforestation under uncertain future climates: Guidelines for Alberta, Canada. PLoS One, 6(8), e22977.  https://doi.org/10.1371/journal.pone.0022977.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gray, L. K., & Hamann, A. (2013). Tracking suitable habitat for tree populations under climate change in western North America. Climatic Change, 117, 289–303.  https://doi.org/10.1007/s10584-012-0548-8.CrossRefGoogle Scholar
  30. Grossnickle, S., & Ivetić, V. (2017). Direct seeding in reforestation – A field performance review. Reforesta, 4, 94–142.  https://doi.org/10.21750/REFOR.4.07.46.CrossRefGoogle Scholar
  31. Honnay, O., & Jacquemyn, H. (2007). Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conservation Biology, 21, 823–831.CrossRefPubMedGoogle Scholar
  32. Hydrometeorological Service of Serbia. (2013). http://www.hidmet.gov.rs/podaci/meteorologija/ciril/l2012.pdf. Accessed online: 09.11.2016.
  33. Hydrometeorological Service of Serbia. (2015). http://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_temp_rezim.php. Accessed online: 09.11.2016.
  34. Ivetić, V. (2015). Reforestation in Serbia: Success or failure? In V. Ivetić, & D. Stanković (Eds.), Proceedings: International conference reforestation challenges (pp. 1–12). 03–06 June 2015, Belgrade, Serbia.Google Scholar
  35. Ivetić, V., & Aleksić, J. (2016). Response of rare and endangered species Picea omorika to climate change – The need for speed. Reforesta, 2, 81–99.  https://doi.org/10.21750/REFOR.2.09.24.CrossRefGoogle Scholar
  36. Ivetić, V., & Devetaković, J. (2016). Reforestation challenges in Southeast Europe facing climate change. Reforesta, 1, 178–220.  https://doi.org/10.21750/10.21750/REFOR.1.10.10.CrossRefGoogle Scholar
  37. Ivetić, V., & Milovanović, J. (2005). Electrical conductivity test for Serbian spruce seed quality estimation. Glasnik Šumarskog fakulteta, 2005(91), 127–133.CrossRefGoogle Scholar
  38. Jezdimirović, J. (2016). Reconstruction of Serbian spruce seed orchard in Godovik. [In Serbian: Реконструкција семенске плантаже Панчићеве оморике у Годовику]. MSc thesis, University of Belgrade. 67 p.Google Scholar
  39. Jovanović, B. (2000). Dendrologija. Udžbenik, šesto dopunjeno izdanje. Beograd: Univerzitet u Beogradu, Šumarski fakultet.Google Scholar
  40. Kasesalu, H. (2002). Serbian spruce (Picea omorika (Panchic) Purkyne) in Estonia. In Dendrological researches in Estonia III (Estonia). Estonian Agricultural University, Tartu (Estonia) (pp. 171–177). Forest Research Institute. (no.3).Google Scholar
  41. Keča, N. (2010). The test of eight tree species resistance to the attack of Armillaria mellea and A. ostoyae by artificial infection. Bulletin of the Faculty of Forestry, 102, 41–56. [In Serbian, Summary in English].  https://doi.org/10.2298/GSF1002041K.CrossRefGoogle Scholar
  42. Kirschbaum, M., & Fischlln, A. (1996). Climate change impacts on forests. In R. Watson, M. C. Zinyowera, & R. H. Moss (Eds.), Climate change 1995 – impacts, adaptations and mitigation of climate change: Scientific-technical analysis, Contribution of Working Group to the Second Assessment Report of the Intergovernmental Panel on Climate Change (pp. 95–129). Cambridge a.o.: Cambridge University Press.Google Scholar
  43. Kolarović, S. (1951). Nalazišta i stanje Pančićeve omorike u NR Srbiji. Šumarstvo Beograd, 4(1), 27–34.Google Scholar
  44. Koskela, J., Vinceti, B., Dvorak, W., Bush, D., Dawson, I. K., Loo, J., Kjaer, E. D., Navarro, C., Padolina, C., Bordács, S., Jamnadass, R., Graudal, L., & Ramamonjisoa, L. (2014). Utilization and transfer of forest genetic resources: A global review. Forest Ecology and Management, 333, 22–34.  https://doi.org/10.1016/j.foreco.2014.07.017.CrossRefGoogle Scholar
  45. Král, D. (2002). Assessing the growth of Picea omorika [Panč.] Purkyně in the Masaryk forest training forest enterprise at Křtiny. Journal of Forest Science, 48(9), 388–398.Google Scholar
  46. Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J. R., Gomulkiewicz, R., Klein, E. K., Ritland, K., Kuparinen, A., Gerber, S., & Schueler, S. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15, 378–392.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kuittinen, H., & Savolainen, O. (1992). Picea omorika is a self fertile but outcrossing conifer. Heredity, 68, 183–187.  https://doi.org/10.1038/hdy.1992.27.CrossRefPubMedGoogle Scholar
  48. Kuittinen, H., Muona, O., Karkkainen, K., & Borzan, Ž. (1991). Serbian spruce, a narrow endemic, contains much genetic variation. Canadian Journal of Forestry Resources, 21, 363–367.  https://doi.org/10.1139/x91-044.CrossRefGoogle Scholar
  49. Laborde, J., & Corrales-Ferrayola, I. (2012). Direct seeding of Brosimum alicastrum Sw. (Moraceae) and Enterolobium cyclocarpum (Jacq.) Griseb. (Mimosaceae) in different habitats in the dry tropics of central Veracruz. Acta Botánica Mexicana, 100(100), 107–134.CrossRefGoogle Scholar
  50. Langner, W. (1959). Ergebnisse Einiger Hybridisierrungsversuche Zwischen Picea sitchensis (Bong.) Carr. und Picea omorika (Pancic) Purkyne. Silvae Genetica, 8, 138–143.Google Scholar
  51. Ledig, F. T., & Kitzmiller, L. H. (1992). Genetic strategies for reforestation in the face of global climate change. Forest Ecology and Management, 50, 153–169.CrossRefGoogle Scholar
  52. Ledig, F. T., Hodgskiss, P. D., Krutovskii, K. V., Neale, D. B., & Eguiluz-Piedra, T. (2004). Relationships among the spruces (Picea, Pinaceae) of southwestern North America. Systematic Botany, 29(2), 275–295.CrossRefGoogle Scholar
  53. Leimu, R., Mutikainen, P., Koricheva, J., & Fisher, M. (2006). How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology, 94, 942–952.CrossRefGoogle Scholar
  54. Lindgren, D. (2016). The role of tree breeding in reforestation. Reforesta, 1, 221–237.  https://doi.org/10.21750/REFOR.1.11.11.CrossRefGoogle Scholar
  55. Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462, 1052–1056.CrossRefPubMedGoogle Scholar
  56. Lockwood, J. D., Aleksić, J. M., Zou, J., Wang, J., Liu, J., & Renner, S. S. (2013). A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Molecular Phylogenetics and Evolution, 69(3), 717–727.CrossRefPubMedGoogle Scholar
  57. Mataruga, M., Isajev, V., Lazarev, V., Balotić, P., & Daničić, V. (2005). Registar šumskih sjemenskih objekata RS-osnova unapređenja sjemenske proizvodnje (pp. 1–222). Banja Luka: Šumarski fakultet ISBN 99938-56-03-7.Google Scholar
  58. Meyer, H. (1960). The Serbian Spruce, P. omorika, a species to supplement the scanty tree flora of Germany. Archive Forstwesen, 9(7), 595–614.Google Scholar
  59. Mikkola, L. (1972). Crossability between Picea omorika (Pančic̀) Purkyne and P. glauca (Moench) Voss. Annales Botanici Fennici, 9(1), 33–36.Google Scholar
  60. Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications, 17, 2145–2151.CrossRefPubMedGoogle Scholar
  61. Milovanović, J., & Šijačić-Nikolić, M. (2010). Characterization of Serbian spruce variability applying isoenzyme markers. Biotechnology & Biotechnological Equipment, 24(1), 1600–1605.  https://doi.org/10.2478/V10133-010-0012-8.CrossRefGoogle Scholar
  62. Mitchell, A. F. (1975). Conifers in the British Isles: A descriptive handbook. London: HMSO 322 p.Google Scholar
  63. Møller, P. F. (2013). Opportunities and problems with introduced tree species in the Danish forests – in a historical perspective. http://www.skogur.is/media/nordisk-skogshistorisk-konferanse/NSH-Reykjavik-Denmark.pdf.
  64. Moritz, C. (1994). Defining ‘evolutionary significant units’ for conservation. Trends in Ecology & Evolution, 9, 373–375.CrossRefGoogle Scholar
  65. Nasri, N., Bojović, S., Vendramin, G. G., & Fady, B. (2008). Population genetic structure of the relict Serbian spruce, Picea omorika, inferred from plastid DNA. Plant Systematics and Evolution, 271, 1–7.  https://doi.org/10.1007/s00606-007-0594-2.CrossRefGoogle Scholar
  66. Nielsen, U. B., & Roulund, H. (1992). Sitkahybrider [Sitkahybrids]. Skoven, 24, 72–75.Google Scholar
  67. Nienstaedt, H. (1977). Mass production alternatives for fast-growing spruce hybrids. In Proceedings of the Thirteenth Lake States Forest Tree Improvement Conference; Gen. Tech. Rep. NC-50 (pp. 56–71). St. Paul: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station.Google Scholar
  68. Nkongolo, K. K. (1999). RAPD and cytological analyses of Picea spp. from different provenances: Genomic relationships among taxa. Hereditas, 130(2), 137–144.CrossRefGoogle Scholar
  69. Nymoen, H. (1978). Picea omorika is not an alternative to P. sitchensis in afforestation. Norsk Skogbruk, 24(4), 15–16.Google Scholar
  70. Ostojić, D., & Dinić, A. (2009). Experimental phytocoenological investigations of Serbian spruce (Picea omorika/Pančić/Purkynĕ) natural regeneration in the national park Tara. Šumarstvo, 2009(1–2), 23–35.Google Scholar
  71. Ostojić, D., & Dinić, A. (2012). Rezervati prirode sa omorikom u Srbiji – osnovne karakteristike i zaštita. Zaštita prirode, 62(2), 5–17.Google Scholar
  72. Pančić, J. (1887). Omorika nova fela četinara u Srbiji. Težak, XVIII(1), 1–8.Google Scholar
  73. Pedlar, J. H., McKenney, D. W., Aubin, I., Beardmore, T., Beaulieu, J., Iverson, L., O’Neill, G. A., Winder, R. S., & Ste-Marie, C. (2012). Placing forestry in the assisted migration debate. Bioscience, 62, 835–842.  https://doi.org/10.1525/bio.2012.62.9.10.CrossRefGoogle Scholar
  74. Pintarić, K. (1999). Forestry and forest reserves in Bosnia and Herzegovina. In J. Dijaci (Ed.), Virgin forests and forest reserves in Central and East European Countries, COST Action E4: Forest Reserves Research Network (pp. 1–15). Ljubljana: Department of Forestry and Renewable Forest Resources, Biotechnical Faculty.Google Scholar
  75. Ran, J. H., Wei, X. X., & Wang, X. Q. (2006). Molecular phylogeny and biogeography of Picea (Pinaceae): Implications for phylogeographical studies using cytoplasmic haplotypes. Molecular Phylogenetics and Evolution, 41(2), 405–419.CrossRefPubMedGoogle Scholar
  76. Ran, J. H., Shen, T. T., Liu, W. J., Wang, P. P., & Wang, X. Q. (2015). Mitochondrial introgression and complex biogeographic history of the genus Picea. Molecular Phylogenetics and Evolution, 93, 63–76.CrossRefPubMedGoogle Scholar
  77. Ravazzi, C. (2002). Late Quaternary history of spruce in southern Europe. Review of Paleobotany and Palinology, 120, 131–177.CrossRefGoogle Scholar
  78. Roulund, H. (1971). Observations on spontaneous hybridization in Picea omorika (Pancic) Purkyne. Forest Tree Improvement, 2, 2–17.Google Scholar
  79. Sander, H., & Meikar, T. Received January 2009. Exotic coniferous trees in Estonian forestry after 1918. Allg. Forst- u. J.-Ztg., 180. Jg., 7/8: 158–169.Google Scholar
  80. Schemske, D. W., & Lande, R. (1985). The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution, 39, 41–52.  https://doi.org/10.2307/2408515.CrossRefPubMedGoogle Scholar
  81. Sigurgeirsson, A., & Szmidt, A. E. (1993). Phylogenetic and biogeographic implications of chloroplast DNA variation in Picea. Nordic Journal of Botany, 13(3), 233–246.CrossRefGoogle Scholar
  82. Šijak, M., & Dinić, A. (1996). Dodatak bibliografiji radova o Pančićevoj omorici (Picea omorika Pančić). Ekologija, 30(1), 165–178.Google Scholar
  83. Siljak-Yakovlev, S., Cerbah, M., Coulaud, J., Stoian, V., Brown, S. C., Zoldos, V., Jelenic, S., & Papes, D. (2002). Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theoretical and Applied Genetics, 104(2), 505–512.CrossRefPubMedGoogle Scholar
  84. Sippel, S., & Otto, F. (2014). Beyond climatological extremes – assessing how the odds of hydrometeorological extreme events in South-East Europe change in a warming climate. Climatic Change, 125, 381–398.  https://doi.org/10.1007/s10584-014-1153-9.CrossRefGoogle Scholar
  85. Spittlehouse, D. L., & Stewart, R. B. (2003). Adapting to climate change in forest management. Journal of Ecosystems and Management, 4, 7–17.Google Scholar
  86. Tucić, B., & Stojković, B. (2001). Shade avoidance syndrome in Picea omorika seedlings: A growth-room experiment. Journal of Evolutionary Biology, 14, 444–455.  https://doi.org/10.1046/j.1420-9101.2001.00291.x.CrossRefGoogle Scholar
  87. Tucić, B., Pemac, D., & Ducić, J. (2005). Life history responses to irradiance at the early seedling stage of Picea omorika (Pancic) Purkynhe: Adaptiveness and evolutionary limits. Acta Oecologica-International Journal of Ecology, 27, 185–195.  https://doi.org/10.1016/j.actao.2004.12.004.CrossRefGoogle Scholar
  88. Tucović, A., & Isajev, V. (1982). The influence of different pollination types on some properties of Serbian spruce cones and seeds. Bulletin Faculty of Forestry (Belgrade), 59, 59–65.Google Scholar
  89. Tucović, A., & Isajev, V. (1988). Generativna semenska plantaža omorike u Godoviku (pp. 1–40). Beograd: Izvođački projekat.Google Scholar
  90. Vidaković, M. (1963). Međuvrsno ukrštanje Pančićeve omorike (Picea omorika/Panč./Purkyne) sa sitkanskom smrčom (Picea sithensis (Bong.) Cariére) (pp. 337–342). Beograd: Šumarstvo.Google Scholar
  91. Vidaković, M. (1982). Četinjače – Morfologija i varijabilnost. JAZU & Liber, Zagreb. 711 pp.Google Scholar
  92. Widrlechner, M. P., Hasselkus, E. R., Herman, D. E., lies, J. K., Pair, J. C., Paparozzi, E. T., Schutzki, R. E., & Wildung, D. K. (1992). Performance of landscape plants from Yugoslavia in the North Central United States. Journal of Environmental Horticulture, 10(4), 192–198.Google Scholar
  93. Williams, M. I., & Dumroese, R. K. (2013). Preparing for climate change: Forestry and assisted migration. Journal of Forestry, 111, 287–297.  https://doi.org/10.5849/jof.13-016.CrossRefGoogle Scholar
  94. Wright, J. W. (1955). Species crossability in spruce in relation to distribution and taxonomy. Forest Science, 1(4), 319–349.Google Scholar
  95. Zehetmayr, J. W. L. (1954). Experiments in tree planting on peat. Forestry Commission Bulletin, 22, 110 p. London.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ForestryUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations