Advertisement

Ex Situ Conservation – Case Study Croatia

  • Davorin Kajba
  • Ivan Andrić
Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 65)

Abstract

Genetic diversity of Croatian forest tree species is being conserved using the ex situ static method. Clonal seed orchards are the nucleus of forest genetic resource conservation, since the relationship between the size of the population and the percentage of preserved heterozygocity is thus reduced to minimal loss of total additive genetic variability. In accordance with the division of forests in Croatia into ecogeographic seed regions and zones, the following productive clonal seed orchards have been established: three orchards of pedunculate oak (Quercus robur L.), two of narrow-leaved ash (Fraxinus angustifoliaVahl), one of sessile oak (Quercus petraea (Matt.) Liebl,), one of wild cherry (Prunus avium L.), and one of black pine (Pinus nigra J. F. Arnold). Phenotypical selection and heterovegetative propagation of plus trees, as well as the establishment of clonal seed orchards were initiated with the goal of controlling more regular yield periodicity and obtaining forest seed of good genetic quality in the categories of Qualified and Tested. The orchards are regularly subjected to pomotechnical treatments, protection and other agrotechnical measures. The evaluation of genetic values of mother trees in progeny tests and genotypic selection was also initiated for the purpose of obtaining increased genetic gain. Climate changes and new site conditions will pose additional challenges to seed production and forest management; in turn, this will influence their economic and social benefits, as well as biological diversity of forest ecosystems.

Keywords

Clonal seed orchards Forest reproductive material 

References

  1. Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–372.CrossRefPubMedGoogle Scholar
  2. Alizoti, P. G., Kilimis, K., & Gallios, P. (2010). Temporal and spatial variation of flowering among Pinus nigra Arn. clones under changing climatic conditions. Forest Ecology and Management, 259(4), 786–797.CrossRefGoogle Scholar
  3. Andrić, I., & Kajba, D. (2017). The impact of environmental drivers on narrow-leaved ash (Fraxinus angustifolia Vahl) budburst dates. Šumarski list, 141(1–2), 7–13.Google Scholar
  4. Andrić, I., Poljak, I., Milotić, M., Idžojtić, M., & Kajba, D. (2016). Fenološka svojstva listanja poljskog jasena (Fraxinus angustifolia Vahl) u klonskoj sjemenskoj plantaži. Šumarski list, 140(3–4), 117–126.CrossRefGoogle Scholar
  5. Bogdan, S., Katicic-Trupcevic, I., & Kajba, D. (2004). Genetic variation in growth traits in a Quercus robur L. open-pollinated progeny test of the Slavonian provenance. Silvae Genetica, 53(5–6), 198–201.CrossRefGoogle Scholar
  6. Bosselmann, A. S., Jacobsen, J. B., Kjær, E. D., & Thorsen, B. J. (2008). Climate change, uncertainty and the economic value of genetic diversity: A pilot study on methodologies. Forest & Landscape, 31, 58.Google Scholar
  7. Diminić, D., Kajba, D., Milotić, M., Andrić, I., & Kranjec, J. (2017). Susceptibility of Fraxinus angustifolia clones to Hymenoscyphus fraxineus in Lowland Croatia. Baltic Forestry, 23(1), 233–243.Google Scholar
  8. Grattapaglia, D., Sansaloni, C. P., Petroli, C. D., Resende Junior, M. F. R., Faria, D. A., Missiaggia, A. A., Takahashi, E. K., Zamprogno, K. C., Kilian, A., & de Resende, M. D. V. (2010). Genomic selection in eucalyptus: Marker assisted selection coming to reality in forest trees. In Proceedings of the Embrapa Florestas-Resumo em anais de congresso (ALICE), USA, San Diego CA.Google Scholar
  9. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences, USA, 103, 14288–14293.CrossRefGoogle Scholar
  10. Huberty, A. F., & Denno, R. F. (2004). Plant water stress and its consequences for herbivorous insects: A new synthesis. Ecology, 85(5), 1383–1398.CrossRefGoogle Scholar
  11. Kajba, D., & Andrić, I. (2015). Forest reproductive material and conservation of forest genetic resources in Croatia. Open Journal of Forestry, 5(02), 117–128.CrossRefGoogle Scholar
  12. Kajba, D., & Hrašovec, B. (2009). Klonske sjemenske plantaže hrasta lužnjaka (Quercus robur L.) i njihova uloga u očuvanju genofonda u uvjetima klimatskih promjena i povećanih rizika od napada šumskih kukaca. In Proceedings of the forests of pedunculate oak in changed site and management conditions, pp, 143–152.Google Scholar
  13. Kajba, D., Bogdan, S., & Katičić, I. (2006a). Estimation of genetic gain for vigorous growth by clonal seed orchards of pedunculate oak (Quercus robur L.). Glasnik za šumske pokuse, pos izd, 5, 251–260.Google Scholar
  14. Kajba, D., Gračan, J., Ivanković, M., Bogdan, S., Gradečki-Poštenjak, M., Littvay, T., & Katičić, I. (2006b). Očuvanje genofonda šumskih vrsta drveća u Hrvatskoj. Glasnik za šumske pokuse, pos izd, 5, 235–249.Google Scholar
  15. Kajba, D., Pavičić, N., Bogdan, S., & Katičić, I. (2007). Pomotehnički zahvati u klonskim sjemenskim plantažama listača. Šumarski list, 131(11–12), 523–528.Google Scholar
  16. Kajba, D., Pavičić, N., Bogdan, S., & Katičić, I. (2008). Pomotechnical treatments in the broadleave clonal seed orchards. In Proceedings of theseed orchard conference, Umeå, Sweden, pp. 95–103.Google Scholar
  17. Kajba, D., Katičić, I., & Bogdan, S. (2011a). Procjena genetskih parametara u testovima polusrodnika hrasta lužnjaka (Quercus robur L.) iz sjemenskih zona Posavine, Podravine i Podunavlja. Croatian Journal of Forest Engineering, 32(1), 177–190.Google Scholar
  18. Kajba, D., Katičić, I., Šumanovac, I., & Žgela, M. (2011b). Važnost klonskih sjemenskih plantaža u sjemenarstvu i očuvanju genofonda šumskih vrsta drveća u Hrvatskoj. Radovi (Hrvatski šumarski institut), 44(1), 37–51.Google Scholar
  19. Kajba, D., Katičić, I., Bogdan, S., & Tančeva Crmarić, O. (2012). Management, genetic gain and genetic diversity in clonal seed orchards in Croatia. In Proceedings of the seed orchards and breeding theory conference, Antalya, Turkey, pp. 42–44.Google Scholar
  20. Kang, K. S., El-Kassaby, Y. A., Han, S. U., & Kim, C. S. (2005). Genetic gain and diversity under different thinning scenarios in a breeding seed orchard of Quercus accutissima. Forest Ecology and Management, 212(1–3), 405–410.CrossRefGoogle Scholar
  21. Katičić, I., Bogdan, S., Sever, K., Šatović, Z., & Kajba, D. (2010). Genetic structure and variability of phenological forms of pedunculate oak (Quercus robur L.) from clonal seed orchards in Croatia. In Proceedings of the Forest ecosystem genomics and adaptation. Book of Abstracts, Bioversity International (Rome, Italy) and INIA (Madrid, Spain), 181 p.Google Scholar
  22. Katičić-Bogdan, I. (2012). Genetska raznolikost hrasta lužnjaka (Quercus robur L.) u klonskim sjemenskim plantažama u Hrvatskoj. Doctoral thesis. Šumarski fakultet Sveučilište u Zagrebu, 165 pp.Google Scholar
  23. Koskela, J., Buck, A., & du Cros, E. T. (2007). EUFORGEN climate change and forest genetic diversity. Rome: Bioversity International 111 pp.Google Scholar
  24. Kremer, A. (2007). How well can existing forests withstand climate change? In Proceedings of the climate change and forest genetic diversity: Implications for sustainable forest management in Europe, Rome, Italy, pp. 3–17.Google Scholar
  25. Lande, R., & Barrowclough, G. F. (1987). Effective population size, genetic variation, and their use in population management. Viable Populations for Conservation, 87, 88–123.Google Scholar
  26. Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397(6721), 659–659.CrossRefGoogle Scholar
  27. Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Ĺ., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Mĺge, F., Mestre, A., Nordli, O., Peńuelas, J., Pirinen, P., Remišová, V., Scheifinger, H., Striz, M., Susnik, A., van Vliet, A. J. H., Wielgolaski, F., Zach, S., & Zust, A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10), 1969–1976.CrossRefGoogle Scholar
  28. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42.CrossRefPubMedGoogle Scholar
  29. Rajora, O., & Mosseler, A. (2001). Molecular markers in conservation, restoration and sustainable management of forest genetic resources. Forest Science, 70, 187–201.CrossRefGoogle Scholar
  30. Savolainen, O., Bokma, F., Knürr, T., Kärkkäinen, K., Pyhäjärvi, T., & Wachowiak W. (2007). Adaptation of forest trees to climate change. In Proceedings of the climate change and forest genetic diversity: Implications for sustainable forest management in Europe, Rome, Italy, pp. 19–28.Google Scholar
  31. Tančeva Crmarić, O., Štambuk, S., & Kajba, D. (2011). Genotipska raznolikost divlje trešnje (Prunus avium L.) u dijelu prirodne rasprostranjenosti u Hrvatskoj. Šumarski list, 135(11–12), 543–554.Google Scholar
  32. Vidaković, M. (1996). Podizanje klonske sjemenske plantaže hrasta lužnjaka. In Proceedings of the Hrast lužnjak (Quercus robur L.) u Hrvatskoj, Vinkovci – Zagreb, pp. 127–138.Google Scholar
  33. Vidaković, M., Kajba, D., Bogdan, S., Podnar, V., & Bećarević, J. (2000). Estimation of genetic gain in a progeny trial of pedunculate oak (Quercus robur L.). Glasnik za šumske pokuse, 37, 375–381.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ForestryUniversity of ZagrebZagrebCroatia

Personalised recommendations