Selection and Breeding of Fast Growing Trees for Multiple Purposes in Serbia

  • Andrej PilipovićEmail author
  • Saša Orlović
  • Branislav Kovačević
  • Vladislava Galović
  • Srđan Stojnić
Part of the Advances in Global Change Research book series (AGLO, volume 65)


Fast growing tree species play significant role in timber production in Serbia with emphasis on poplars and willows as most dominant species. Use of poplar and willow for establishment of highly productive plantations requires reproductive material which originates from long term breeding and selection processes which are conducted both in Serbia and worldwide. Besides coping with traditional issues such are productivity and resistance to pest and diseases, current circumstances (climate change, degraded lands etc.) pose new challenges in breeding of poplars and willows. This article presents review of both traditional and contemporary breeding and selection processes conducted in Serbia with aim of production new cultivars/clones suitable to obtain various desired properties.


Poplar and willow clones Productivity Rooting Phytoremediation Molecular markers 


  1. Birol, I., Raymond, A., Jackman, S. D., Pleasance, S., Coope, R., Taylor, G. A., Yuen, M. M. S., Keeling, C. I., Brand, D., Vandervalk, B. P., Kirk, H., Pandoh, P., Moore, R. A., Zhao, Y., Mungall, A. J., Jaquish, B., Yanchuk, A., Ritland, C., Boyle, B., Bousquet, J., Ritland, K., MacKay, J., Bohlmann, J., & Jones, S. J. M. (2013). Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics, 29, 1492–1497.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Borisev, M., Pajevic, S., Nikolic, N., Pilipovic, A., Krstic, B., & Orlovic, S. (2009). Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Polish Journal of Environmental Studies, 18, 553–561.Google Scholar
  3. Fladung, M., Schroeder, H., Wehenkel, C. A., & Kersten, B. (2016). Differentiation of Eucalyptusclones grown in Mexico by ITS and chloroplast barcoding markers. Silvae Genetica, 64, 121–130.CrossRefGoogle Scholar
  4. Galovic, V., & Orlovic, S. (2007). Overview of DNA based studies of genetic variability in poplars. Topola, 179/180, 71–79.Google Scholar
  5. Galovic, V., Orlovic, S., Kovacevic, B., &Pilipovic, A. (2009). Microsatellite genetic relationships of Populus clones, cultivars and hybrids from two sections of genus Populus. In: Proceedings of the International Scientific Conference “Forestry in achieving millennium goals”, (Serbia). pp. 325–331.Google Scholar
  6. Galovic, V., Orlovic, S., Pap, P., Zgonjanin-Bosic, D., Mataruga, M., Poljakovic-Pajnik, L., & Drekic, M. (2010a, September 20–25). Revealing the genetic background of poplar breeding material. Fifth International poplar symposium “Poplars and willows: from research models to multipurpose trees for a bio-based society”, Orvieto, Italy. p. 64.Google Scholar
  7. Galovic, V., Orlovic, S., Pap, P., Kovacevic, B., & Markovic, M. (2010b). Specificity of SSR loci for Melampsora species on poplars. Genetika, 42(3), 513–520.CrossRefGoogle Scholar
  8. Galovic, V., Orlovic, S., Trudic, B., Pekec, S., & Vasic, S. (2012). Unutarlokusni polimorfizam Sorbus spp. na teritoriji Republike Srbije. Topola, 189/190, 87–98.Google Scholar
  9. Galovic, V., Orlovic, S., Trudic, B., Pekec, S., Pilipovic, A., & Stojnic, S. (2013, October 1–2). Sequence polymorphisms of beech provenances in north and central Serbia. Book of abstracts of the International Scientific Conference, Sofia, Bulgaria, p. 47.Google Scholar
  10. Galovic, V., Orlovic, S., Zoric, M., Kovacevic, B., & Vasic, S. (2014, November 26–28). Different phenology induced genotype diversity of Q. robur L. in the seed orchard in Srem provenance, Republic of Serbia. Book of Abstracts of the International Scientific Conference “Natural resources green technologies & sustainable development”, Zagreb, Croatia. p. 133.Google Scholar
  11. Galovic, V., Sijacic-Nikolic, M., Safhauzer, R., Cortan, D., & Orlovic, S. (2015a). Genetic differentiation of Norway spruce (Picea abies (L.) Karst.) trees with diferent crown types from the mountain Golija. Genetika, 47, 849–861.CrossRefGoogle Scholar
  12. Galovic, V., Orlovic, S., & Fladung, M. (2015b). Characterization of two poplar homologs of the GRAS/SCL gene, which encodes a transcription factor putatively associated with salt tolerance. iForest, 8, 780–785.CrossRefGoogle Scholar
  13. Galovic, V., Orlovic, S., Szabados, L., Perez, I., Prathiba, M., & Fladung, M. (2017, September 18–22). Stress related overview of two poplar homologues of GRAS/SCL TF: From characterization, cloning to differential expression. IUFRO 125th Anniversary Congress, Freiburg, Germany, p. 570.Google Scholar
  14. Gordon, M., Choe, N., Duffy, J., Ekuan, G., Heilman, P., Muiznieks, I., Newman, L., Raszaj, M., Shurtleff, B., Strand, S., & Wilmoth, J. (1997). Phytoremediation of trichloroethylene with hybrid poplars. In Phytoremediation of soil and water contaminants (pp. 177–185). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  15. Guzina, V. (1987). The variability of poplar clones in their capacity of rooting of their cuttings. Topola/Poplar, 151/152, 13–24 [In Serbian].Google Scholar
  16. Haggman, H., Sutela, S., & Fladung, M. (2016). Genetic engineering contribution to forest tree breeding efforts. In: Biosafety of forest transgenic trees (pp. 11–29). Heidelberg: Springer.CrossRefGoogle Scholar
  17. Heilman, P. E., Ekuang, G., & Fogle, D. B. (1994). First order root development from cuttings of Populus trichocarpa x P. deltoides hybrids. Tree Physiology, 14, 911–920.CrossRefPubMedGoogle Scholar
  18. IPC. (2016, September 12–16). Trends & perspectives in poplar & willow cultivation: Global synthesis. 25th Session n of FAO International Poplar Commission, Berlin. Available online at:
  19. Isik, F. (2016). Genomic selection in forest tree breeding: The concept and an outlook to the future. New Forests, 45, 379–401.CrossRefGoogle Scholar
  20. Kersten, B., Voss, M. M., & Fladung, M. (2015). Development of mitochondrial SNP markers in different Populus species. Trees, 29, 575–582.CrossRefGoogle Scholar
  21. Klasnja, B., Orlovic, S., Galic, Z., Drekic, M., Vasic, V., & Pilipovic, A. (2008). Poplar biomass of high density short rotation plantations as raw material for energy production. Wood Research (Drevarsky Vyskum), 53, 27–38.Google Scholar
  22. Klasnja, B., Orlovic, S., & Galic, Z. (2012). Energy potential of poplar plantations in two spacings and two rotations. Sumarski list, 3–4(CXXXVI), 161–167.Google Scholar
  23. Konstantinov, K., Mladenovic-Drinic, S., Sijacic-Nikolic, M., Vasilije, I., & Matagura, M. (2005). Molecular markers application for genetic resourses characterization of different plant species. International workshop: The role of Biotehnology, Book of proceedings, Turin, Italy. pp. 181–183.Google Scholar
  24. Kovacevic, B., Guzina, V., Kraljevic-Balalic, M., & Ivanovic, M. (2007). Variability and relationship among cuttings’ rooting characters for eastern cottonwood. Genetika, 39(1), 29–38.CrossRefGoogle Scholar
  25. Kovacevic, B., Orlovic, S., Katanic, M., Pekec, S., & Stojnic, S. (2008a, November 13–15). Variability of rooting characters in one-year old black poplar (Aigeiros Duby) rooted cuttings. In: Proceedings of International Scientific Conference “Forestry in Achieving Millennium Goals”, Novi Sad. pp. 427–432.Google Scholar
  26. Kovacevic, B., Guzina, V., Kraljevic-Balalic, M., Ivanovic, M., & Nikolic-DJoric, E. (2008b). Evaluation of early rooting traits of eastern cottonwood that are important for selection tests. Silvae Genetica, 57(1), 13–21.CrossRefGoogle Scholar
  27. Kovacevic, B., Roncevic, S., Miladinovic, D., Ivanisevic, P., & Katanic, M. (2009). Early shoot and root growth dynamics as indicators for the survival of black poplar cuttings. New Forests, 38, 177–185.CrossRefGoogle Scholar
  28. Kovacevic, B., Orlovic, S., Ivanovic, I., Cobanovic, K., Nikolic-Doric, E., Katanic, M., & Galovic, V. (2011). Relationship among eastern cottonwood genotypes according to early rooting traits. Genetika, 43(2), 307–320.CrossRefGoogle Scholar
  29. Licht, L. A., & Isebrands, J. G. (2005). Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass and Bioenergy, 28, 203–218.CrossRefGoogle Scholar
  30. Nikolic, N., Borisev, M., Pajevic, S., Arsenov, D., Zupunski, M., Orlovic, S., & Pilipovic, A. (2015). Photosynthetic response and tolerance of three willow species to cadmium exposure in hydroponic culture. Archives of Biological Sciiences, 67(4), 1411–1420.CrossRefGoogle Scholar
  31. Nikolic, N., Zoric, L., Cvetkovic, I., Pajevic, S., Borisev, M., Orlovic, S., & Pilipovic, A. (2017). Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus x euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enfiched soil. iForest, 10, 635–644.CrossRefGoogle Scholar
  32. Nonic, M., Heinze, B., Ivetic, V., Mengl, M., & Slunsky, R. (2014, September 28–October 2). Assessment of inter-population genetic variability of beech by microsatellite markers. Book of abstracts of the V Congress of the Serbian Genetic Society, Kladovo – Belgrade, Serbia, p. 366.Google Scholar
  33. Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y.-C., Scofield, D. G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., Vicedomini, R., Sahlin, K., Sherwood, E., Elfstrand, M., Gramzow, L., Holmberg, K., Hällman, J., Keech, O., Klasson, L., Koriabine, M., Kucukoglu, M., Käller, M., Luthman, J., Lysholm, F., Niittylä, T., Olson, Å., Rilakovic, N., Ritland, C., Rosselló, J. A., Sena, J., Svensson, T., Talavera-López, C., Theißen, G., Tuominen, H., Vanneste, K., Wu, Z.-Q., Zhang, B., Zerbe, P., Arvestad, L., Bhalerao, R., Bohlmann, J., Bousquet, J., Garcia Gil, R., Hvidsten, T. R., de Jong, P., MacKay, J., Morgante, M., Ritland, K., Sundberg, B., Lee Thompson, S., Van de Peer, Y., Andersson, B., Nilsson, O., Ingvarsson, P. K., Lundeberg, J., & Jansson, S. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature, 497, 579–584.CrossRefGoogle Scholar
  34. Orlovic, S. (1996). Proucavanje svojstava crnih topola znacajnih za unapredjenje selekcije na bujnost. Doktorska disertacija, Univerzitet u Beogradu Sumarski fakultet, Beograd, Srbija.Google Scholar
  35. Orlovic, S., Guzina, V., Krstic, B., & Merkulov, L. J. (1998). Genetic variability in anatomical, physiological and growth characteristics of hybrid poplar (Populus x euramericana DODE (GUINIER)) and eastern cottonwood (Populus deltoides BARTR.) clones. Silvae Genetica, 47, 183–190.Google Scholar
  36. Orlovic, S., Pajevic, S., Krstic, B., & Kovacevic, B. (2001). Genetic and phenotypic correlation of physiological and growth parameters of poplar clones. Genetika, 33, 53–64.Google Scholar
  37. Orlovic, S., Pajevic, S., & Krstic, B. (2002). Selection of black poplars for water use efficiency. Zbornik Matice Srpske za Prirodne Nauke, 102, 45–51.CrossRefGoogle Scholar
  38. Orlovic, S., Klasnja, B., Pilipovic, A., Radosavljevic, N., & Markovic, M. (2003). A possibility of early selection of black poplars (Section Aigeiros DUBY) for biomass production on the basis of anatomical and physiological properties. Topola, 171/172, 35–44.Google Scholar
  39. Orlovic, S., Pilipovic, A., Galic, Z., Ivanisevic, P., & Radosavljevic, N. (2006a). Results of poplar clone testing in field experiments. Genetika, 38(3), 257–264.CrossRefGoogle Scholar
  40. Orlovic, S., Pajevic, S., Klasnja, B., Galic, Z., & Markovic, M. (2006b). Variability of physiological and growth characteristics of white willow (Salix alba L.) clones. Genetika, 38, 145–152.CrossRefGoogle Scholar
  41. Orlovic, S., Galovic, V., Zoric, M., Kovacevic, B., Pilipovic, A., & Galic, Z. (2009). Evaluation of interspecific DNA variability in poplars using AFLP and SSR markers. African Journal of Biotechnology, 8, 5241–5247.Google Scholar
  42. Orlovic, S., Pilipovic, A., Galovic, V., Klasnja, B., Pap, P., & Radosavljevic, N. (2010). The role of new poplar strains in the alleviation of the effects of climate change. In L. J. Rakonjac (Ed.), Proceedings from the international scientific conference: Forest ecosystems and climate changes (pp. 57–70). Belgrade: Institute of Forestry.Google Scholar
  43. Pakull, B., Kersten, B., Luneburg, Ј., & Fladung, М. (2015). A simple PCR-based marker to determine sex in aspen. Plant Biology, 17, 256–261.CrossRefPubMedGoogle Scholar
  44. Pilipovic, A., Nikolic, N., Orlovic, S., Petrovic, N., & Krstic, B. (2005). Cadmium phytoextraction potential of poplar clones (Populus spp.). Zeitschrift für Naturforschung, 60c, 247–251.Google Scholar
  45. Pilipovic, A., Orlovic, S., Nikolic, N., Borisev, M., Krstic, B., & Roncevic, S. (2012). Growth and plant physiological parameters as markers for selection of poplar clones for crude oil phytoremediation. Sumarski List, 3–4(CXXXVI), 273–281.Google Scholar
  46. Pillon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.CrossRefGoogle Scholar
  47. Popovic, B. M., Stajner, D., Zdero-Pavlovic, R. A., Tumbas-Saponjac, V., Canadanovic-Brunet, J., & Orlovic, S. (2016). Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.). Plant Physiology and Biochemistry, 105, 242–250.CrossRefPubMedGoogle Scholar
  48. Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–226.CrossRefPubMedGoogle Scholar
  49. Salt, D. E., Blaylock, M., Nanda Kumar, P. B., Dushenkov, A. V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.PubMedGoogle Scholar
  50. Schroeder, H., & Fladung, M. (2014). Differentiation of Populus species by chloroplast SNP markers for barcoding and breeding approaches. iForest – Biogeosciences and Forestry, 8, 49–53CrossRefGoogle Scholar
  51. Smith, N. G., & Wareing, P. F. (1972). The distribution of latent root primordia in stems of Populus x robusta and factors affecting the emergence of preformed roots from cuttings. Forestry, 45, 197–209.CrossRefGoogle Scholar
  52. Stojnic, S., Orlovic, S., Trudic, B., Zivkovic, U., von Wuehlisch, G., & Miljkovic, D. (2015). Phenotypic plasticity of European beech (Fagus sylvatica L.) stomatal features underwater deficit assessed in provenance trial. Dendrobiology, 73, 163–173.CrossRefGoogle Scholar
  53. Teissier du Cros, E. (1984). Breeding strategies with poplars in Europe. Forest Ecology and Management, 8, 23–39.CrossRefGoogle Scholar
  54. Topic, M., Borisev, M., Orlovic, S., Tomicic, M., Zupunski, M., Nikolic, N., Pajevic, S., Krstic, B., & Pilipovic, A. (2013). Clonal differences of black poplar cuttings for morpho-physiological and biochemical responses to soil water deficits. Journal of Animal and Plant Sciences, 23, 1725–1732.Google Scholar
  55. Tschaplinski, T. J., & Blake, T. J. (1989). Correlation between early root production, carbohydrate metabolism and subsequent biomass production in hybrid poplar. Canadian Journal of Botany, 67, 2168–2174.CrossRefGoogle Scholar
  56. Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R. R., Bhaterao, R. P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., & Busov, V. (2006). The genome of black Cottonwood, Populustrichocarpa (Torr. & Gray). Science, 313, 1596–1604.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vasic, V., Galic, Z., & Drekic, M. (2010). Ucinkovitost i selektivnost nekih herbicida u rasadnickoj proizvodnji sadnica topola. Sumarski List, 134, 395–401.Google Scholar
  58. Vasic, V., Orlovic, S., Pap, P., Kovacevic, B., Drekic, M., Poljakovic-Pajnik, L., & Galic, Z. (2015). Application of pre-emergence herbicides in poplar nursery production. Journal of Forestry Research, 26, 143–151.CrossRefGoogle Scholar
  59. Wilcox, R. J., & Farmer, E. R., Jr. (1968). Heritability and effects in early root growth of Eastern cottoonwood cuttings. Heredity, 23, 239–245.CrossRefGoogle Scholar
  60. Ying, C., & Bagley, W. T. (1977). Variation in rooting capability of Populus deltoides. Silvae Genetica, 26, 204–207.Google Scholar
  61. Zalesny, R. S., Hall, R. B., Bauer, E. O., & Reimenshneider, D. E. (2005). Soil temperature and precipitation affect the rooting ability of dormant hardwood cuttings of Populus. Silvae Genetica, 54, 47–58.CrossRefGoogle Scholar
  62. Zimin, A., Stevens, K. A., Crepeau, M. W., Holtz-Morris, A., Koriabine, M., Marcais, G., Puiu, D., Roberts, M., Wegrzyn, J. L., de Jong, P. J., Neale, D. B., Salzberg, S. L., Yorke, J. A., & Langley, C. H. (2014). Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics, 196, 875–890.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrej Pilipović
    • 1
    Email author
  • Saša Orlović
    • 1
  • Branislav Kovačević
    • 1
  • Vladislava Galović
    • 1
  • Srđan Stojnić
    • 1
  1. 1.Institute of Lowland Forestry and EnvironmentUniversity of Novi SadNovi SadSerbia

Personalised recommendations