Advertisement

A Semantic Account of Rigorous Simulation

  • Adam Duracz
  • Eugenio Moggi
  • Walid TahaEmail author
  • Zhenchao Lin
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10760)

Abstract

Hybrid systems are a powerful formalism for modeling cyber-physical systems. Reachability analysis is a general method for checking safety properties, especially in the presence of uncertainty and non-determinism. Rigorous simulation is a convenient tool for reachability analysis of hybrid systems. However, to serve as proof tool, a rigorous simulator must be correct w.r.t. a clearly defined notion of reachability, which captures what is intuitively reachable in finite time.

As a step towards addressing this challenge, this paper presents a rigorous simulator in the form of an operational semantics and a specification in the form of a denotational semantics. We show that, under certain conditions about the representation of enclosures, the rigorous simulator is correct. We also show that finding a representation satisfying these assumptions is non-trivial.

Keywords

Reachability analysis Correctness Programming languages 

References

  1. 1.
  2. 2.
    Aljarbouh, A., Caillaud, B.: On the regularization of chattering executions in real time simulation of hybrid systems. In: Baltic Young Scientists Conference, p. 49 (2015)Google Scholar
  3. 3.
    Aljarbouh, A., Zeng, Y., Duracz, A., Caillaud, B., Taha, W.: Chattering-free simulation for hybrid dynamical systems. In: 2016 IEEE International Conference on Computational Science and Engineering, IEEE International Conference on Embedded and Ubiquitous Computing, and International Symposium on Distributed Computing and Applications to Business, Engineering and Science. IEEE Computer Society (2016)Google Scholar
  4. 4.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci. 138, 3–34 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57318-6_30CrossRefGoogle Scholar
  6. 6.
    Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173(11), 1079–1100 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4), 511–547 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Duracz, A.: Rigorous simulation: its theory and applications. Ph.D. thesis. Halmstad University Press (2016)Google Scholar
  9. 9.
    Duracz, A., Bartha, F.A., Taha, W.: Accurate rigorous simulation should be possible for good designs. In: 2016 International Workshop on Symbolic and Numerical Methods for Reachability Analysis, SNR, pp. 1–10. IEEE (2016)Google Scholar
  10. 10.
    Duracz, A., Eriksson, H., Bartha, F.A., Zeng, Y., Xu, F., Taha, W.: Using rigorous simulation to support ISO 26262 hazard analysis and risk assessment. In: 12th International Conference on Embedded Software and Systems, ICESS, pp. 1093–1096. IEEE (2015)Google Scholar
  11. 11.
    Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. 29(2), 28–93 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Henzinger, T.A.: The theory of hybrid automata. In: Logic in Computer Science, pp. 278–292. IEEE Computer Society, New Brunswick (1996)Google Scholar
  13. 13.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, London (2001).  https://doi.org/10.1007/978-1-4471-0249-6CrossRefzbMATHGoogle Scholar
  14. 14.
    Johansson, K.H., Egerstedt, M., Lygeros, J., Sastry, S.: On the regularization of Zeno hybrid automata. Syst. Control Lett. 38(3), 141–150 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Konečnỳ, M., Taha, W., Bartha, F.A., Duracz, J., Duracz, A., Ames, A.D.: Enclosing the behavior of a hybrid automaton up to and beyond a Zeno point. Nonlinear Anal.: Hybrid Syst. 20, 1–20 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Konečný, M., Taha, W., Duracz, J., Duracz, A., Ames, A.: Enclosing the behavior of a hybrid system up to and beyond a Zeno point. In: 1st IEEE International Conference on Cyber-Physical Systems, Networks, and Applications, CPSNA, pp. 120–125 (2013)Google Scholar
  17. 17.
    Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical Systems Approach. MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  18. 18.
    Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 25–53. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31954-2_2CrossRefGoogle Scholar
  19. 19.
    Lygeros, J.: Lecture notes on hybrid systems. In: Notes for an ENSIETA Workshop (2004). Sect. 4.2Google Scholar
  20. 20.
    Moggi, E., Farjudian, A., Duracz, A., Taha, W.: Safe & robust reachability analysis of hybrid systems. Theor. Comput. Sci. (2018).  https://doi.org/10.1016/j.tcs.2018.06.020
  21. 21.
    Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Upper Saddle River (1966)Google Scholar
  22. 22.
    Taha, W., Brauner, P., Zeng, Y., Cartwright, R., Gaspes, V., Ames, A., Chapoutot, A.: A core language for executable models of cyber-physical systems (preliminary report). In: 32nd International Conference on Distributed Computing Systems, pp. 303–308. IEEE (2012)Google Scholar
  23. 23.
    Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)zbMATHGoogle Scholar
  24. 24.
    Zeng, Y., Bartha, F., Taha, W.: Compile-time extensions to hybrid ODEs. In: Ábrahám, E., Bogomolov, S. (eds.) Proceedings of 3rd International Workshop on Symbolic and Numerical Methods for Reachability Analysis, Uppsala, Sweden. Electronic Proceedings in Theoretical Computer Science, vol. 247, pp. 52–70. Open Publishing Association (2017)CrossRefGoogle Scholar
  25. 25.
    Zeng, Y., Chad, R., Taha, W., Duracz, A., Atkinson, K., Philippsen, R., Cartwright, R., O’Malley, M.: Modeling electromechanical aspects of cyber-physical systems. J. Softw. Eng. Robot. 7(1), 100–119 (2016)Google Scholar
  26. 26.
    Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Int. J. Robust Nonlinear Control 11(5), 435–451 (2001)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zheng, H., Lee, E.A., Ames, A.D.: Beyond Zeno: get on with It!. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 568–582. Springer, Heidelberg (2006).  https://doi.org/10.1007/11730637_42CrossRefGoogle Scholar
  28. 28.
    Zhu, Y., Westbrook, E., Inoue, J., Chapoutot, A., Salama, C., Peralta, M., Martin, T., Taha, W., O’Malley, M., Cartwright, R., et al.: Mathematical equations as executable models of mechanical systems. In: Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems, pp. 1–11. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Adam Duracz
    • 1
  • Eugenio Moggi
    • 2
  • Walid Taha
    • 3
    Email author
  • Zhenchao Lin
    • 4
  1. 1.Rice UniversityHoustonUSA
  2. 2.DIBRISGenova UniversityGenovaItaly
  3. 3.Halmstad UniversityHalmstadSweden
  4. 4.Zhejiang UniversityHangzhouChina

Personalised recommendations