Pathology and Molecular Biology

  • Maria Aparecida Azevedo Koike FolgueiraEmail author
  • Marina Candido Visontai Cormedi
  • Daniela Marques Saccaro
  • Maria Lucia Hirata Katayama


To explore the molecular biology of diffuse gastric cancer (DGC), it is important to have an overview of the molecular biology of gastric cancer (GC) in general. Recent advances in tumor genome sequencing, as well as gene expression and proteomic analysis, have allowed the distinction of new GC subtypes. We will review two major molecular classifications proposed by two different groups: The Cancer Genome Atlas and the Asian Cancer Research Group.


Pathology Molecular CDH1 gene Genomic E-cadherin 


  1. 1.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.CrossRefGoogle Scholar
  2. 2.
    Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449–56.CrossRefPubMedGoogle Scholar
  3. 3.
    Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016; pii: S0140-6736(16)30354-3.Google Scholar
  4. 4.
    Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet. 2008; Chapter 10:Unit 10.11 (link accessed July 2016).Google Scholar
  5. 5.
    Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46(6):573–82.CrossRefGoogle Scholar
  6. 6.
    Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014;46(6):583–7.CrossRefGoogle Scholar
  7. 7.
    Maeda M, Ushijima T. RHOA mutation may be associated with diffuse-type gastric cancer progression, but is it gain or loss? Gastric Cancer. 2016;19(2):326–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Lee J, Lee SE, Kang SY, Do IG, Lee S, Ha SY, et al. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer. 2013;119(9):1627–35.CrossRefPubMedGoogle Scholar
  9. 9.
    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Yamamoto E, Suzuki H, Takamaru H, Yamamoto H, Toyota M, Shinomura Y. Role of DNA methylation in the development of diffuse-type gastric cancer. Digestion. 2011;83(4):241–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MA. Epigenetic mechanisms in gastric cancer. Epigenomics. 2012;4(3):279–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yepes S, López R, Andrade RE, Rodriguez-Urrego PA, López-Kleine L, Torres MM. Co-expressed miRNAs in gastric adenocarcimona. Genomics. 2016; pii: S0888-7543(16)30071-4.Google Scholar
  14. 14.
    Dweep H, et al. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37((Web Server issue)):W305–11.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    S F, Gretschel S, Jöns T, Yashiro M, Kemmner W. THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod Pathol. 2011;24(10):1390–403.CrossRefGoogle Scholar
  17. 17.
    Jinawath N, Furukawa Y, Hasegawa S, Li M, Tsunoda T, Satoh S, et al. Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray. Oncogene. 2004;23(40):6830–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Bang YJ, Chung HC, Xu JM, Lordick F, Sawaki A, Lipatov O, et al. Pathological features of advanced gastric cancer: relationship to human epidermal growth factor receptor 2 positivity in the global screening programme of the ToGA trial. J Clin Oncol. 2009;27 Suppl: Abstract 4556.Google Scholar
  19. 19.
    Gall TM, Frampton AE. Gene of the month: E-cadherin (CDH1). J Clin Pathol. 2013;66(11):928–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Vinyoles M, Del Valle-Pérez B, Curto J, Viñas-Castells R, Alba-Castellón L, de Herreros G, et al. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol Cell. 2014;53(3):444–57.CrossRefPubMedGoogle Scholar
  21. 21.
    Du W, Liu X, Fan G, Zhao X, Sun Y, Wang T, et al. From cell membrane to the nucleus: an emerging role of E-cadherin in gene transcriptional regulation. J Cell Mol Med. 2014;18(9):1712–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776–84.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    F G, Humar B, Guilford P. The role of the E-cadherin gene (CDH1) in diffuse gastric cancer susceptibility: from the laboratory to clinical practice. Ann Oncol. 2003;14(12):1705–13.CrossRefGoogle Scholar
  24. 24.
    Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci. 1999;24(2):73–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Lazăr D, Tăban S, Ardeleanu C, Dema A, Sporea I, Cornianu M, et al. The immunohistochemical expression of E-cadherin in gastric cancer; correlations with clinicopathological factors and patients’ survival. Rom J Morphol Embryol. 2008;49(4):459–67.PubMedGoogle Scholar
  26. 26.
    Peinado H, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol. 2004;48(5–6):365–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Makdissi FB, Machado LV, Oliveira AG, Benvenuti TT, Katayama ML, Brentani MM, et al. Expression of E-cadherin, Snail and Hakai in epithelial cells isolated from the primary tumor and from peritumoral tissue of invasive ductal breast carcinomas. Braz J Med Biol Res. 2009;42(12):1128–37.CrossRefPubMedGoogle Scholar
  28. 28.
    Aparicio LA, Valladares M, Blanco M, Alonso G, Figueroa A. Biological influence of Hakai in cancer: a 10-year. Cancer Metastasis Rev. 2012;31(1–2):375–86.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Suriano G, Oliveira MJ, Huntsman D, Mateus AR, Ferreira P, Casares F, Oliveira C, Carneiro F, et al. E-cadherin germline missense mutations and cell phenotype: evidence for the independence of cell invasion on the motile capabilities of the cells. Hum Mol Genet. 2003;12(22):3007–16.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maria Aparecida Azevedo Koike Folgueira
    • 1
    Email author
  • Marina Candido Visontai Cormedi
    • 1
  • Daniela Marques Saccaro
    • 1
  • Maria Lucia Hirata Katayama
    • 1
  1. 1.Faculdade de Medicina FMUSP, Universidade de Sao PauloSao PauloBrazil

Personalised recommendations