Advertisement

Predictive Biomarkers and Targeted Therapies in Immuno-oncology

  • Hartmut Koeppen
  • Mark L. McCleland
  • Marcin Kowanetz
Chapter

Abstract

Cancer immunotherapy (CIT) has transformed our approach in diagnosis and treatment of cancer. However, durable responses or cures are only seen in a minority of patients, illustrating the need for reliable biomarkers that identify patients most likely to receive meaningful clinical benefit. PD-L1 immunohistochemistry (IHC) has been extensively used in clinical development programs for anti-PD-L1/PD-1 targeted therapies. Notably, four independently developed PD-L1 IHC assays have demonstrated clinically meaningful predictive value in several indications and are approved as companion or complementary diagnostics. PD-L1 IHC is by no means a flawless biomarker or diagnostic. Numerous studies have found that a subset of PD-L1 negative patients do in fact derive clinical benefit from CIT therapy, highlighting the need for more precise diagnostic tools. Gene signatures with emphasis on immune-related biology and tumor mutation burden, a surrogate for neoantigen presentation, have both emerged as new promising CIT biomarkers and have demonstrated predictive value in exploratory clinical studies. As of today, neither of these biomarkers has gained approval as a companion or complementary diagnostic or has shown the capacity to accurately capture all patients that could potentially benefit from CIT. It is likely, based on the complexity of the tumor microenvironment, that more than one biomarker will be required to identify patients that benefit from CIT in the future.

Keywords

Cancer immunotherapy Predictive biomarker Companion diagnostic PD-L1 PD-1 Immunohistochemistry Gene signatures Tumor mutational burden (TMB) SP142 SP263 22c3 28-8 Atezolizumab Pembrolizumab Nivolumab Durvalumab Tumor-infiltrating lymphocytes (TILs) 

References

  1. 1.
    Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.CrossRefGoogle Scholar
  3. 3.
    Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dempke WCM, et al. Second- and third-generation drugs for immuno-oncology treatment-the more the better? Eur J Cancer. 2017;74:55–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Langer CJ, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–508.CrossRefPubMedGoogle Scholar
  6. 6.
    Jotte RM, et al. PS01.53: first-line atezolizumab plus chemotherapy in chemotherapy-naive patients with advanced NSCLC: a phase III clinical program: topic: medical oncology. J Thorac Oncol. 2016;11(11S):S302–3.CrossRefPubMedGoogle Scholar
  7. 7.
    Gulley JL, et al. Immunotherapy biomarkers 2016: overcoming the barriers. J Immunother Cancer. 2017;5(1):29.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yuan J, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer. 2016;4:3.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Eggermont AM, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375(19):1845–55.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Horn L, et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 2017;35(35):3924–33.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Motzer RJ, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Younes A, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ferris RL, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sharma P, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Overman MJ, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    El-Khoueiry AB, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502.CrossRefGoogle Scholar
  18. 18.
    Weber J, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Robert C, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Herbst RS, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.CrossRefPubMedGoogle Scholar
  21. 21.
    Reck M, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen R, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bellmunt J, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Balar AV, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–92.CrossRefGoogle Scholar
  25. 25.
    Bauml J, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol. 2017;35(14):1542–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rittmeyer A, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Rosenberg JE, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54(4):307–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Gnjatic S, et al. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer. 2017;5:44.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Scheerens H, et al. Current status of companion and complementary diagnostics: strategic considerations for development and launch. Clin Transl Sci. 2017;10(2):84–92.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hirsch FR, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12(2):208–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Hendry S, et al. Comparison of four PD-L1 immunohistochemical assays in lung cancer. J Thorac Oncol. 2018;13(3):367–76.CrossRefPubMedGoogle Scholar
  34. 34.
    Rimm DL, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 2017;3(8):1051–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gadgeel S, et al. 1296OClinical efficacy of atezolizumab (Atezo) in PD-L1 subgroups defined by SP142 and 22C3 IHC assays in 2L+ NSCLC: results from the randomized OAK study. Ann Oncol. 2017;28(suppl_5):mdx380.001–mdx380.001.Google Scholar
  36. 36.
    Kerr KM. The PD-L1 immunohistochemistry biomarker: two steps forward, one step back? J Thorac Oncol. 2018;13(3):291–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Hamid O, et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med. 2011;9:204.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tarhini AA, et al. Expression profiles of immune-related genes are associated with neoadjuvant ipilimumab clinical benefit. Oncoimmunology. 2017;6(2):e1231291.CrossRefPubMedGoogle Scholar
  39. 39.
    Fehrenbacher L, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–46.CrossRefPubMedGoogle Scholar
  40. 40.
    Gadgeel S, et al. PL04a.02: OAK, a randomized Ph III study of atezolizumab vs docetaxel in patients with advanced NSCLC: results from subgroup analyses. J Thorac Oncol. 2017;12(1):S9–S10.CrossRefGoogle Scholar
  41. 41.
    Reck M, et al. LBA1_PRPrimary PFS and safety analyses of a randomized phase III study of carboplatin + paclitaxel +/− bevacizumab, with or without atezolizumab in 1L non-squamous metastatic nsclc (IMPOWER150). Ann Oncol. 2017;28(suppl_11):mdx760.002–mdx760.002.CrossRefGoogle Scholar
  42. 42.
    Higgs BW, et al. Relationship of baseline tumoral IFNγ mRNA and PD-L1 protein expression to overall survival in durvalumab-treated NSCLC patients. J Clin Oncol. 2016;34(15_suppl):3036–3036.CrossRefGoogle Scholar
  43. 43.
    Ayers M, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–51.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Powles T, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57.CrossRefPubMedGoogle Scholar
  48. 48.
    Kowanetz M, et al. OA20.01 tumor mutation burden (TMB) is associated with improved efficacy of atezolizumab in 1L and 2L+ NSCLC patients. J Thorac Oncol. 2017;12(1):S321–2.CrossRefGoogle Scholar
  49. 49.
    Mutation load offers predictive biomarker in SCLC. Cancer Discov. 2017. [Epub ahead of print].  https://doi.org/10.1158/2159-8290.CD-NB2017-154.
  50. 50.
    Carbone DP, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.CrossRefPubMedGoogle Scholar
  51. 51.
    Gandara DR, et al. 1295OBlood-based biomarkers for cancer immunotherapy: tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK). Ann Oncol. 2017;28(suppl_5):mdx380-mdx380.CrossRefGoogle Scholar
  52. 52.
    Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Masucci GV, et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume I – pre-analytical and analytical validation. J Immunother Cancer. 2016;4:76.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Dobbin KK, et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume II – clinical validation and regulatory considerations. J Immunother Cancer. 2016;4:77.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hartmut Koeppen
    • 1
  • Mark L. McCleland
    • 2
  • Marcin Kowanetz
    • 2
  1. 1.Research PathologyGenentechSouth San FranciscoUSA
  2. 2.Department of Oncology Biomarker DevelopmentGenentechSouth San FranciscoUSA

Personalised recommendations