Advertisement

Bioinformatic Methods and Resources for Biomarker Discovery, Validation, Development, and Integration

  • Júlia Perera-Bel
  • Andreas Leha
  • Tim Beißbarth
Chapter

Abstract

Biomarkers are becoming an integral part of medicine. The process of biomarker discovery, clinical validation, and the adoption of biomarkers in clinical routine all pose new challenges in the fields of bioinformatics and biostatistics. With the growing availability of high-throughput technology, the medical research challenge is to discover individual biomarkers or biomarker signatures that predict therapy or therapy outcome. This chapter aims to give a brief overview of the bioinformatic and biostatistical methods and tools which are being used in the research of biomarker discovery, as well as the testing of biomarkers in clinical trials, up to the processing and reporting issues when applying biomarkers in clinical routine. Topics that will be discussed are (a) an overview of resources that can be used for biomarker discovery and testing, (b) bioinformatic and machine learning methods needed for biomarker discovery from omics data, (c) clinical trials and validation strategies to bring biomarkers into clinical practice, and (d) reporting and interpreting biomarkers in clinical routine.

Keywords

Bioinformatic biomarker discovery Systems medicine Machine learning Biomarker clinical trials Tumor board reports 

References

  1. 1.
    Kannan L, Ramos M, Re A, El-Hachem N, Safikhani Z, Gendoo DM, Davis S, Gomez-Cabrero D, Castelo R, Hansen KD, Carey VJ, Morgan M, Culhane AC, Haibe-Kains B, Waldron L. Public data and open source tools for multi-assay genomic investigation of disease. Brief Bioinform. 2016;17(4):603–15.  https://doi.org/10.1093/bib/bbv080.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. New York: Springer; 2003.Google Scholar
  3. 3.
    Kuhn M, Johnson K. Applied predictive modeling. New York: Springer; 2013.CrossRefGoogle Scholar
  4. 4.
    Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16(2):85–97.  https://doi.org/10.1038/nrg3868.CrossRefPubMedGoogle Scholar
  5. 5.
    Kramer F, Beißbarth T. Working with ontologies. Methods Mol Biol. 2017;1525:123–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Porzelius C, Johannes M, Binder H, Beissbarth T. Leveraging external knowledge on molecular interactions in classification methods for risk prediction of patients. Biom J. 2011;53(2):190–201.  https://doi.org/10.1002/bimj.201000155.CrossRefPubMedGoogle Scholar
  7. 7.
    Glaab E. Using prior knowledge from cellular pathways and molecular networks for diagnostic specimen classification. Brief Bioinform. 2016;17(3):440–52.  https://doi.org/10.1093/bib/bbv044.CrossRefPubMedGoogle Scholar
  8. 8.
    Kramer F, Bayerlová M, Beißbarth T. R-based software for the integration of pathway data into bioinformatic algorithms. Biology (Basel). 2014;3(1):85–100.  https://doi.org/10.3390/biology3010085.CrossRefGoogle Scholar
  9. 9.
    Dienstmann R, Rodon J, Tabernero J. Optimal design of trials to demonstrate the utility of genomically-guided therapy: putting precision cancer medicine to the test. Mol Oncol. 2015;9(5):940–50.  https://doi.org/10.1016/j.molonc.2014.06.014.CrossRefPubMedGoogle Scholar
  10. 10.
    Bennett NC, Farah CS. Next-generation sequencing in clinical oncology: next steps towards clinical validation. Cancers (Basel). 2014;6(4):2296–312.  https://doi.org/10.3390/cancers6042296.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Júlia Perera-Bel
    • 1
  • Andreas Leha
    • 1
  • Tim Beißbarth
    • 1
  1. 1.Department of Medical StatisticsUniversity Medical Center GöttingenGöttingenGermany

Personalised recommendations