An Innovative Framework for Supporting Frequent Pattern Mining Problems in IoT Environments

  • Peter Braun
  • Alfredo Cuzzocrea
  • Carson K. Leung
  • Adam G. M. Pazdor
  • Syed K. Tanbeer
  • Giorgio Mario Grasso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10964)


In the current era of big data, high volumes of a wide variety of data of different veracity can be easily generated or collected at a high velocity from rich sources of data include devices from the Internet of Things (IoT). Embedded in these big data are useful information and valuable knowledge. Hence, frequent pattern mining and its related research problem of association rule mining, which aim to discover implicit, previously unknown and potentially useful information and knowledge—in the form of sets of frequently co-occurring items or rules revealing relationships between these frequent sets—from these big data have drawn attention of many researchers. For instance, since introduction of the research problems of association rule mining or frequent pattern mining, numerous information system and engineering approaches have been developed. These include the development of serial algorithms, distributed and parallel algorithms, as well as MapReduce-based big data mining algorithms. These algorithms can be run in local computers, distributed and parallel environments, as well as clusters, grids and clouds. In this paper, we describe some of these algorithms and discuss how to mine frequent patterns or association rules in fogs—i.e., edges of the computing network.


Frequent patterns Frequent sets of items Association rules Big data Distributed computing Parallel computing High performance computing Cloud computing Fog computing Edge computing 


  1. 1.
    Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: an overview. AI Mag. 13(3), 57–70 (1992)Google Scholar
  2. 2.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD 1993, pp. 207–216 (1993)CrossRefGoogle Scholar
  3. 3.
    Leung, C.K., Jiang, F., Cruz, E.M.D., Elango, V.S.: Association rule mining in collaborative filtering. In: Collaborative Filtering Using Data Mining and Analysis, pp. 159–179 (2017)Google Scholar
  4. 4.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of VLDB 1994, pp. 487–499 (1994)Google Scholar
  5. 5.
    Leung, C.K.: Frequent itemset mining with constraints. In: Encyclopedia of Database Systems, 2nd edn (2018).
  6. 6.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD 2000, pp. 1–12 (2000)CrossRefGoogle Scholar
  7. 7.
    Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D.: H-mine: hyper-structure mining of frequent patterns in large databases. In: Proceedings of IEEE ICDM 2001, pp. 441–448 (2001)Google Scholar
  8. 8.
    Jiang, F., Leung, C.K., Zhang, H.: B-mine: frequent pattern mining and its application to knowledge discovery from social networks. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds.) APWeb 2016. LNCS, vol. 9931, pp. 316–328. Springer, Cham (2016). Scholar
  9. 9.
    Zaki, M.J.: Scalable algorithms for association mining. IEEE TKDE 12(3), 372–390 (2000)Google Scholar
  10. 10.
    Zaki, M.J.: Fast vertical mining using diffsets. In: Proceedings of ACM KDD 2003, pp. 326–335 (2003)Google Scholar
  11. 11.
    Shenoy, P., Bhalotia, J.R., Bawa, M., Shah, D.: Turbo-charging vertical mining of large databases. In: Proceedings of ACM SIGMOD 2000, pp. 22–33 (2000)CrossRefGoogle Scholar
  12. 12.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of IEEE ICDE 1995, pp. 3–14 (1995)Google Scholar
  13. 13.
    Jiang, F., Leung, C.K., Sarumi, O.A., Zhang, C.Y.: Mining sequential patterns from uncertain big DNA data in the spark framework. In: Proceedings of IEEE BIBM 2016, pp. 874–881 (2016)Google Scholar
  14. 14.
    Chanda, A.K., Ahmed, C.F., Samiullah, M., Leung, C.K.: A new framework for mining weighted periodic patterns in time series databases. Expert Syst. Appl. 79, 207–224 (2017)CrossRefGoogle Scholar
  15. 15.
    Leung, C.K., Khan, Q.I.: DSTree: a tree structure for the mining of frequent sets from data streams. In: Proceedings of IEEE ICDM 2006, pp. 928–932 (2006)Google Scholar
  16. 16.
    Shajib, M.B., Samiullah, M., Ahmed, C.F., Leung, C.K., Pazdor, A.G.M.: An efficient approach for mining frequent patterns over uncertain data streams. In: Proceedings of IEEE ICTAI 2016, pp. 980–984 (2016)Google Scholar
  17. 17.
    Ramamohanarao, K.: Contrast pattern mining and its applications. In: Proceedings of ADC 2010, pp. 5–8 (2010)Google Scholar
  18. 18.
    Carmichael, C.L., Hayduk, Y., Leung, C.K.: Visually contrast two collections of frequent patterns. In: Proceedings of IEEE ICDM Workshops 2011, pp. 1128–1135 (2011)Google Scholar
  19. 19.
    Leung, C.K.-S., Mateo, M.A.F., Brajczuk, D.A.: A tree-based approach for frequent pattern mining from uncertain data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS, vol. 5012, pp. 653–661. Springer, Heidelberg (2008). Scholar
  20. 20.
    Leung, C.K.-S.: Uncertain frequent pattern mining. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 339–367. Springer, Cham (2014). Scholar
  21. 21.
    Leung, C.K., MacKinnon, R.K., Jiang, F.: Finding efficiencies in frequent pattern mining from big uncertain data. World Wide Web (WWW) 20(3), 571–594 (2017)CrossRefGoogle Scholar
  22. 22.
    Li, Y., Bailey, J., Kulik, L., Pei, J.: Mining probabilistic frequent spatio-temporal sequential patterns with gap constraints from uncertain databases. In: Proceedings of IEEE ICDM 2013, pp. 448–457 (2013)Google Scholar
  23. 23.
    Zaki, M.J.: Parallel and distributed association mining: a survey. IEEE Concurr. 7(4), 14–25 (1999)CrossRefGoogle Scholar
  24. 24.
    Tanbeer, S.K., Ahmed, C.F., Jeong, B.: Parallel and distributed frequent pattern mining in large databases. In: Proceedings of IEEE HPCC 2009, pp. 407–414 (2009)Google Scholar
  25. 25.
    Agrawal, R., Shafer, J.C.: Parallel mining of association rules. IEEE TKDE 8(6), 962–969 (1996)Google Scholar
  26. 26.
    Chandru, V., Mueller, F.: Hybrid MPI/OpenMP programming on the Tilera manycore architecture. In: Proceedings of HPCS 2016, pp. 326–333 (2016)Google Scholar
  27. 27.
    Utrera, G., Gil, M., Martorell, X.: In search of the best MPI-OpenMP distribution for optimum Intel-MIC cluster performance. In: Proceedings of HPCS 2015, pp. 429–435 (2015)Google Scholar
  28. 28.
    Rosa, A., Chen, L.Y., Binder, W.: Predicting and mitigating jobs failures in big data clusters. In: Proceedings of IEEE/ACM CCGrid 2015, pp. 221–230 (2015)Google Scholar
  29. 29.
    Ertl, B., Stevanovic, U., Hayrapetyan, A., Wegh, B., Hardt, M.: Identity harmonization for federated HPC, grid and cloud services. In: Proceedings of HPCS 2016, pp. 621–627 (2016)Google Scholar
  30. 30.
    Cuzzocrea, A., Leung, C.K., Jiang, F., MacKinnon, R.K.: Complex mining from uncertain big data in distributed environments: problems, definitions and two effective and efficient algorithms. In: Big Data Management and Processing, pp. 297–332 (2017)Google Scholar
  31. 31.
    Leung, C.K.: Big data analysis and mining, Chap. 30. In: Encyclopedia of Information Science and Technology, 4th edn (2017)Google Scholar
  32. 32.
    Leung, C.K.-S., Hayduk, Y.: Mining frequent patterns from uncertain data with MapReduce for big data analytics. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013. LNCS, vol. 7825, pp. 440–455. Springer, Heidelberg (2013). Scholar
  33. 33.
    Fumarola, F., Malerba, D.: A parallel algorithm for approximate frequent itemset mining using MapReduce. In: Proceedings of HPCS 2014, pp. 335–342 (2014)Google Scholar
  34. 34.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of OSDI 2004, pp. 137–150 (2004)Google Scholar
  35. 35.
    Noor, S., Uddin, V.: MapReduce for multi-view object recognition. In: Proceedings of HPCS 2016, pp. 575–582 (2016)Google Scholar
  36. 36.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. FGCS 25(6), 599–616 (2009)CrossRefGoogle Scholar
  37. 37.
    Han, Z., Leung, C.K.: FIMaaS: scalable frequent itemset mining-as-a-service on cloud for non-expert miners. In: Proceedings of BigDAS 2015, pp. 84–91 (2015)Google Scholar
  38. 38.
    Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association rules in large databases. In: Proceedings of VLDB 1995, pp. 432–444 (1995)Google Scholar
  39. 39.
    Wang, K., Tang, L., Han, J., Liu, J.: Top down FP-Growth for association rule mining. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 334–340. Springer, Heidelberg (2002). Scholar
  40. 40.
    Zaiane, O.R., El-Hajj, M., Lu, P.: Fast parallel association rule mining without candidacy generation. In: Proceedings of IEEE ICDM 2001, pp. 665–668 (2001)Google Scholar
  41. 41.
    Yu, K.-M., Zhou, J., Hsiao, W.C.: Load balancing approach parallel algorithm for frequent pattern mining. In: Malyshkin, V. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 623–631. Springer, Heidelberg (2007). Scholar
  42. 42.
    Chen, D., Lai, C., Hu, W., Chen, W.G., Zhang, Y., Zheng, W.: Tree partition based parallel frequent pattern mining on shared memory systems. In: Proceedings of IEEE IPDPS 2006 (2006)Google Scholar
  43. 43.
    Lin, M., Lee, P., Hsueh, S.: Apriori-based frequent itemset mining algorithms on MapReduce. In: Proceedings of ICUIMC 2012 (2012). Article no. 76Google Scholar
  44. 44.
    Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  45. 45.
    Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: PFP: parallel FP-growth for query recommendation. In: Proceedings of ACM RecSys 2008, pp. 107–114 (2008)Google Scholar
  46. 46.
    Zhang, Z., Ji, G., Tang, M.: MREclat: an algorithm for parallel mining frequent itemsets. In: Proceedings of CBD 2013, pp. 177–180 (2013)Google Scholar
  47. 47.
    Snady, M., Emin, A., Bart, G.: Frequent itemset mining for big data. In: Proceedings of IEEE BigData 2013, pp. 111–118 (2013)Google Scholar
  48. 48.
    Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for Internet of Things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). Scholar
  49. 49.
    Dastjerdi, A.V., Buyya, R.: Fog computing: helping the Internet of Things realize its potential. IEEE Comput. 49(8), 112–116 (2016)CrossRefGoogle Scholar
  50. 50.
    Linthicum, D.S.: Connecting fog and cloud computing. IEEE Cloud Comput. 4(2), 18–20 (2017)CrossRefGoogle Scholar
  51. 51.
    Cannataro, M., Cuzzocrea, A., Pugliese, A.: A probabilistic approach to model adaptive hypermedia systems. In: Proceedings of WebDyn 2001, pp. 12–30 (2001)Google Scholar
  52. 52.
    Cuzzocrea, A., Furfaro, F., Saccà, D.: Enabling OLAP in mobile environments via intelligent data cube compression techniques. J. Intell. Inf. Syst. 33(2), 95–143 (2009)CrossRefGoogle Scholar
  53. 53.
    Cuzzocrea, A.: Accuracy control in compressed multidimensional data cubes for quality of answer-based OLAP tools. In: Proceedings of SSDBM 2006, pp. 301–310 (2006)Google Scholar
  54. 54.
    Cuzzocrea, A., Fortino, G., Rana, O.F.: Managing data and processes in cloud-enabled large-scale sensor networks: state-of-the-art and future research directions. In: Proceedings of IEEE/ACM CCGrid 2013, pp. 583–588 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Peter Braun
    • 1
  • Alfredo Cuzzocrea
    • 2
  • Carson K. Leung
    • 1
  • Adam G. M. Pazdor
    • 1
  • Syed K. Tanbeer
    • 1
  • Giorgio Mario Grasso
    • 3
  1. 1.University of ManitobaWinnipegCanada
  2. 2.University of Trieste and ICAR-CNRTriesteItaly
  3. 3.University of MessinaMessinaItaly

Personalised recommendations