Skip to main content

A Theoretical Investigation of the Reaction H+SiS2 and Implications for the Chemistry of Silicon in the Interstellar Medium

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10961))

Abstract

Silicon sulfide, SiS, has been recently detected in a shocked region around a Sun-like protostar (L1157-B1) with an anomalously high abundance with respect to the more common SiO. This has challenged our comprehension of silicon chemistry in the interstellar medium. In this paper, the reaction H+SiS2 has been computationally investigated by means of electronic structure and kinetic calculations to establish its role in the conversion of interstellar SiS2 into SiS by the abundant H atoms. The calculated reaction rate coefficients between 70–100 K are high enough to conclude that SiS2 cannot be considered a reservoir species of silicon or sulphur in interstellar objects and that, if formed, SiS2 is rapidly converted into SiS+HS by the reaction with atomic hydrogen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. The Cologne database. http://www.astro.uni-koeln.de/cdms/molecules. Accessed 26 Feb 2008

  2. Podio, L., Codella, C., Lefloch, B., Balucani, N., Ceccarelli, C., Bachiller, R., Benedettini, M., Cernicharo, J., Faginas-Lago, N., Fontani, F., Gusdorf, A., Rosi, M.: Silicon-bearing molecules in the shock L1157-B1: first detection of SiS around a Sun-like protostar. Mon. Not. R. Astron. Soc. Lett. 470(1), L16–L20 (2017)

    Article  Google Scholar 

  3. Herbst, E., Millar, T.J., Wlodek, S., Bohme, D.K.: The chemistry of silicon in dense interstellar clouds. Astron. Astrophys. 222, 205–210 (1989)

    Google Scholar 

  4. MacKay, D.D.S.: The chemistry of silicon in hot molecular cores. Mon. Not. R. Astron. Soc. 274, 694–700 (1995)

    Article  Google Scholar 

  5. Ziurys, L.M.: SiS in Orion KL – Evidence for outflow chemistry. Astrophys. J. 324, 544–552 (1988)

    Article  Google Scholar 

  6. Ziurys, L.M.: SiS in outflow regions – more high-temperature silicon chemistry. Astrophys. J. 379, 260–266 (1991)

    Article  Google Scholar 

  7. Tercero, B., Vincent, L., Cernicharo, J., Viti, S., Marcelino, N.: A line-confusion limited millimeter survey of Orion KL II. Silicon-bearing species. Astron. Astrophys. 528, A26 (2011)

    Article  Google Scholar 

  8. Morris, M., Gilmore, W., Palmer, P., Turner, B.E., Zuckerman, B.: Detection of interstellar SiS and a study of IRC+10216 molecular envelope. Astrophys. J. 199, L47–L51 (1975)

    Article  Google Scholar 

  9. Dickinson, D.F., Kuiper, E.N.R.: Inter-stellar silicon sulfide. Astrophys. J. 247, 112–115 (1981)

    Article  Google Scholar 

  10. Rosi, M., Mancini, L., Skouteris, D., Ceccarelli, C., Faginas Lago, N., Podio, L., Codella, C., Lefloch, B., Balucani, N.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S2. Chem. Phys. Lett. 695, 87–93 (2018)

    Article  Google Scholar 

  11. Wakelam, V., Loison, J.-C., Herbst, E., Pavone, B., Bergeat, A., Beroff, K., Chabot, M., Faure, A., Galli, D., Geppert, W.D., Gerlich, D., Gratier, P., Harada, N., Hickson, K.M., Honvault, P., Klippenstein, S.J., Le Picard, S.D., Nyman, G., Ruaud, M., Schlemmer, S., Sims, I.R., Talbi, D., Tennyson, J., Wester, R.: The 2014 KIDA network for interstellar chemistry. Astrophys. J. Suppl. Ser. 217(2), 20 (2015)

    Article  Google Scholar 

  12. McElroy, D., Walsh, C., Markwick, A.J., Cordiner, M.A., Smith, K., Millar, T.J.: The UMIST database for astrochemistry 2012. Astron. Astrophys. 550, A36 (2013)

    Article  Google Scholar 

  13. Wlodek, S., Bohme, D.K.: Gas-phase oxidation and sulfidation of Si+(2P), SiO+ and SiS+. J. Chem. Soc., Faraday Trans. 2(85), 1643–1654 (1989)

    Article  Google Scholar 

  14. Wlodek, S., Fox, A., Bohme, D.K.: Gas-phase reactions of Si+ and SiOH+ with molecules containing hydroxyl groups – possible ion molecule reaction pathways toward silicon monoxide, silanoic acid, and trihydroxy-silane, trimethoxysilane and triethoxysilane. J. Am. Chem. Soc. 109, 6663–6667 (1987)

    Article  Google Scholar 

  15. Hao, Y., Xie, Y., Schaefer III, H.F.: Features of the potential energy surface for the SiO+OH→SiO2+H reaction: relationship to oxygen isotopic partitioning during gas phase SiO2 formation. RSC Adv. 4, 47163–47168 (2014)

    Article  Google Scholar 

  16. Yang, T., Thomas, A.M., Dangi, B.B., Kaiser, R.I., Mebel, A.M., Millar, T.J.: Directed gas phase formation of silicon dioxide and implications for the formation of interstellar silicates. Nat. Commun. 9, 774 (2018)

    Article  Google Scholar 

  17. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  18. Stephens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Article  Google Scholar 

  19. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cosi, M., Rega, N., Milla, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  20. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  Google Scholar 

  21. Woon, D.E., Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1983)

    Article  Google Scholar 

  22. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Article  Google Scholar 

  23. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Article  Google Scholar 

  24. Flükiger, P., Lüthi, H.P., Portmann, S., Weber, J.: MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno (Switzerland), (2000–2002)

    Google Scholar 

  25. Portmann, S., Lüthi, H.P.: MOLEKEL: an interactive molecular graphics tool. Chimia 54, 766–769 (2000)

    Google Scholar 

  26. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32, 359–401 (1981)

    Article  Google Scholar 

  27. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys Lett. 157, 479–483 (1989)

    Article  Google Scholar 

  28. Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)

    Article  Google Scholar 

  29. Barone, V., Latouche, C., Skouteris, D., Vazart, F., Balucani, N., Ceccarelli, C., Lefloch, B.: Gas-phase formation of the prebiotic molecule formamide: insights from new quantum computations. Mon. Not. R. Astron. Soc. Lett. 453, L31–L35 (2015)

    Article  Google Scholar 

  30. Skouteris, D., Vazart, F., Ceccarelli, C., Balucani, N., Puzzarini, C., Barone, V.: New quantum chemical computations of formamide deuteration support gas-phase formation of this prebiotic molecule. Mon. Not. R. Astron. Soc. Lett. 468, L1–L5 (2017)

    Google Scholar 

  31. Skouteris, D., Balucani, N., Ceccarelli, C., Vazart, F., Puzzarini, C., Barone, V., Codella, C., Lefloch, B.: The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid and formic acid. Astrophys. J. 854, 135 (2018)

    Article  Google Scholar 

  32. Vazart, F., Latouche, C., Skouteris, D., Balucani, N., Barone, V.: Cyanomethanimine isomers in cold interstellar clouds: insights from electronic structure and kinetic calculations. Astrophys. J. 810, 111 (2015)

    Article  Google Scholar 

  33. Leonori, F., Petrucci, R., Balucani, N., Casavecchia, P., Rosi, M., Skouteris, D., Berteloite, C., Le Picard, S.D., Canosa, A., Sims, I.R.: Crossed-beam dynamics, low-temperature kinetics, and theoretical studies of the reaction S(1D)+C2H4. J. Phys. Chem. A 113, 15328–15345 (2009)

    Article  Google Scholar 

  34. Balucani, N., Skouteris, D., Leonori, F., Petrucci, R., Hamberg, M., Geppert, W.D., Casavecchia, P., Rosi, M.: Combined crossed beam and theoretical studies of the N(2D)+C2H4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 116, 10467–10479 (2012)

    Article  Google Scholar 

  35. Leonori, F., Skouteris, D., Petrucci, R., Casavecchia, P., Rosi, M., Balucani, N.: Combined crossed beam and theoretical studies of the C(1D)+CH4 reaction. J. Chem. Phys. 138(2), 024311 (2013)

    Article  Google Scholar 

  36. Xie, C., Li, J., Xie, D., Guo, H.: Quasi-classical trajectory study of the H+CO2→HO+CO reaction on a new ab initio based potential energy surface. J. Chem. Phys. 137, 024308 (2012)

    Article  Google Scholar 

  37. Caracciolo, A., Lu, D., Balucani, N., Vanuzzo, G., Stranges, D., Wang, X., Li, J., Guo, G., Casavecchia, P.: A combined experimental-theoretical study of the OH+CO→H+CO2 reaction dynamics. J. Phys. Chem. Lett. 9, 1229–1236 (2018). https://doi.org/10.1021/acs.jpclett.7b03439

    Article  Google Scholar 

  38. Caselli, P., Ceccarelli, C.: Our astrochemical heritage. Astron. Astrophys. Rev. 20, 56 (2012)

    Article  Google Scholar 

  39. Ceccarelli, C., Caselli, P., Fontani, F., Neri, R., López-Sepulcre, A., Codella, C., Feng, S., Jiménez-Serra, I., Lefloch, B., Pineda, J.E., Vastel, C., Alves, F., Bachiller, R., Balucani, N., Bianchi, E., Bizzocchi, L., Bottinelli, S., Caux, E., Chacón-Tanarro, A., Choudhury, R., Coutens, A., Dulieu, F., Favre, C., Hily-Blant, P., Holdship, J., Kahane, C., Jaber Al-Edhari, A., Laas, J., Ospina, J., Oya, Y., Podio, L., Pon, A., Punanova, A., Quenard, D., Rimola, A., Sakai, N., Sims, I.R., Spezzano, S., Taquet, V., Testi, L., Theulé, P., Ugliengo, P., Vasyunin, A.I., Viti, S., Wiesenfeld, L., Yamamoto, S.: Astrophys. J. 850, 176 (2017)

    Article  Google Scholar 

  40. Balucani, N., Ceccarelli, C., Taquet, V.: Formation of complex organic molecules in cold objects: the role of gas-phase reactions. Mon. Not. R. Astron. Soc. 449, L16–L20 (2015)

    Article  Google Scholar 

  41. Ceccarelli, C., Viti, S., Balucani, N., Taquet, V.: The evolution of grain mantles and silicate dust growth at high redshift. Mon. Not. R. Astron. Soc. 476, 1371–1383 (2018). https://doi.org/10.1093/mnras/sty313/4848281

    Article  Google Scholar 

Download references

Acknowledgments

DS wishes to thank the Italian Ministero dell’Istruzione, Università e Ricerca (MIUR_FFABR17_SKOUTERIS) and the Scuola Normale Superiore (SNS_RB_SKOUTERIS) for financial support. N. F-L acknowledges financial support from Fondazione Cassa di Risparmio di Perugia (P2014/1255, ACT2014/6167). This work has been supported by the project PRIN-INAF 2016 The Cradle of Life - GENESIS-SKA (General Conditions in Early Planetary Systems for the rise of life with SKA). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, for the Project “The Dawn of Organic Chemistry” (DCO), grant agreement No 741002. This work has also been supported by MIUR “PRIN 2015” funds, project “STARS in the CAOS (Simulation Tools for Astrochemical Reactivity and Spectroscopy in the Cyberinfrastructure for Astrochemical Organic Species)”, Grant Number 2015F59J3R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Skouteris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skouteris, D. et al. (2018). A Theoretical Investigation of the Reaction H+SiS2 and Implications for the Chemistry of Silicon in the Interstellar Medium. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics