Towards Group Fuzzy Analytical Hierarchy Process

  • George W. MusumbaEmail author
  • Ruth D. Wario
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 244)


Group decision making takes place in almost all domains. In building construction domain, a team of contractors with disparate specializations collaborate. Little research has been done to propose group decision making technique for this domain. As such, specific teams’ competitiveness enhancements are minimal as it takes more time for individual evaluators to choose the right partners. Qualitative and quantitative methods were used. Themes and categorizations were based on deductive approach. Subsequently, Group Fuzzy Analytical Hierarchy Process (GFAHP), Multi-Criteria Decision Making (MCDM) algorithm, was designed and applied. It uses all evaluation criteria unlike Fuzzy AHP (FAHP) which excludes some criteria that are assigned zero weights. GFAHP reduces the number of pairwise comparisons required when a large number of attributes are to be compared. Validation of the technique carried out by five case studies, show that GFAHP is approximately 98.7% accurate in the selection of partners.


Multi criteria decision making Group Fuzzy Analytical Hierarchy Process Partners evaluation and selection problem 


  1. 1.
    Wu, D., Olson, D.L.: Supply chain risk, simulation, and vendor selection. Int. J. Prod. Econ. 114, 646–655 (2008)CrossRefGoogle Scholar
  2. 2.
    Bai, C., Sarkis, J.: Integrating sustainability into supplier selection with grey system and rough set methodologies. Int. J. Prod. Econ. 124, 252–264 (2010)CrossRefGoogle Scholar
  3. 3.
    Talukhaba, A.A.: An investigation into factors causing construction project delays in Kenya. Case study of high rise building projects in Nairobi. Doctoral dissertation, University of Nairobi (1999)Google Scholar
  4. 4.
    Chen, Y., Lien, H., Tzeng, G., Yang, L.: Fuzzy MCDM approach for selecting the best environment-watershed plan. Appl. Soft Comput. 11, 265–275 (2009)CrossRefGoogle Scholar
  5. 5.
    Chiou, H.K., Tzeng, G.H., Cheng, D.C.: Evaluating sustainable fishing development strategies using fuzzy MCDM approach. Omega 33(3), 223–234 (2005)CrossRefGoogle Scholar
  6. 6.
    Nyongesa, H.O., Musumba, G.W., Chileshe, N.: Partner selection and performance evaluation framework for a construction- related virtual enterprise: a multi-agent systems approach. Archit. Eng. Des. Manag. 13, 1–21 (2017)Google Scholar
  7. 7.
    Musumba, G., Kanyi, P., Nyongesa, H., Wario, R.: Techniques for evaluation and selection of partners for construction projects. In: Pan African Conference on Science, Computing and Telecommunication (PACT) (2017)Google Scholar
  8. 8.
    Karsak, E.E., Dursun, M.: An integrated fuzzy MCDM approach for supplier evaluation and selection. Comput. Ind. Eng. 82, 82–93 (2015)CrossRefGoogle Scholar
  9. 9.
    Chen, C.T., Lin, C.T., Huang, S.F.: A fuzzy approach for supplier evaluation and selection in supply chain management. Int. J. Prod. Econ. 102, 289–301 (2006)CrossRefGoogle Scholar
  10. 10.
    Dickson, G.: An analysis of vendor selection systems and decisions. J. Purch. 2, 5–17 (1966)CrossRefGoogle Scholar
  11. 11.
    Lehmann, D.R., O’Shaughnessy, J.: Difference in attribute importance for different industrial products. J. Mark. 38(2), 36–42 (1974)CrossRefGoogle Scholar
  12. 12.
    Weber, C.A., Current, J.R., Benton, W.C.: Vendor selection criteria and methods. Eur. J. Oper. Res. 50, 2–18 (1991)CrossRefGoogle Scholar
  13. 13.
    Bevilacqua, M., Petroni, A.: From traditional purchasing to supplier management: a fuzzy logic-based approach to supplier selection. Int. J. Logist. Res. Appl. 5(3), 235–255 (2002)CrossRefGoogle Scholar
  14. 14.
    Bottani, E., Rizzi, A.: A fuzzy multi-attribute framework for supplier selection in an e-procurement environment. Int. J. Logist. Res. Appl. 8(3), 249–266 (2005)CrossRefGoogle Scholar
  15. 15.
    Chan, F.T.S., Kumar, N.: Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 35, 417–431 (2007)CrossRefGoogle Scholar
  16. 16.
    Chan, F.T.S., Kumar, N., Tiwari, M.K., Lau, H.C.W., Choy, K.L.: Global supplier selection: a fuzzy-AHP approach. Int. J. Prod. Res. 46(14), 3825–3857 (2008)CrossRefGoogle Scholar
  17. 17.
    Wang, S.Y.: Applying 2-tuple multi-granularity linguistic variables to determine the supply performance in dynamic environment based on product-oriented strategy2-tuple. IEEE Trans. Fuzzy Syst. 16(1), 29–39 (2008)CrossRefGoogle Scholar
  18. 18.
    Chen, L.Y., Wang, T.C.: Optimizing partners’ choice in IS/IT outsourcing projects: the strategic decision of fuzzy VIKOR. Int. J. Prod. Econ. 120, 233–242 (2009)CrossRefGoogle Scholar
  19. 19.
    Kavita, Yadav, S.P., Kumar, S.: A multi-criteria interval-valued intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. LNCS, vol. 5908, pp. 303–312. Springer, Heidelberg (2009). Scholar
  20. 20.
    Wang, W.P.: A fuzzy linguistic computing approach to supplier evaluation. Appl. Math. Model. 34, 3130–3141 (2010)CrossRefGoogle Scholar
  21. 21.
    Vinodh, S., Ramiya, R.A., Gautham, S.G.: Application of fuzzy analytic network process for supplier selection in a manufacturing organization. Expert Syst. Appl. 38, 272–280 (2011)CrossRefGoogle Scholar
  22. 22.
    Baskaran, V., Nachiappan, S., Rahman, S.: Indian textile suppliers’ sustainability evaluation using the grey approach. Int. J. Prod. Econ. 135, 647–658 (2012)CrossRefGoogle Scholar
  23. 23.
    Chu, T.C., Varma, R.: Evaluating suppliers via a multiple levels multiple criteria decision making method under fuzzy environment. Comput. Ind. Eng. 62, 653–660 (2012)CrossRefGoogle Scholar
  24. 24.
    Govindan, K., Khodaverdi, R., Jafarian, A.: A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J. Clean. Prod. 47, 345–354 (2013)CrossRefGoogle Scholar
  25. 25.
    Roshandel, J., Miri-Nargesi, S.S., Hatami-Shirkouhi, L.: Evaluating and selecting the supplier in detergent production industry using hierarchical fuzzy TOPSIS. Appl. Math. Model. 37, 10170–10181 (2013)CrossRefGoogle Scholar
  26. 26.
    Junior, F.R.L., Osiro, L., Carpinetti, L.C.R.: A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 21, 194–209 (2014)CrossRefGoogle Scholar
  27. 27.
    Haq, A.N., Kannan, G.: Design of an integrated supplier selection and multi-echelon distribution inventory model in a built- to-order supply chain environment. Int. J. Prod. Res. 44(10), 1963–1985 (2006)CrossRefGoogle Scholar
  28. 28.
    Sevkli, M., Koh, S.C.L., Zaim, S., Demirbag, M., Tatoglu, E.: Hybrid analytical hierarchy process model for supplier selection. Ind. Manag. Data Syst. 108(1), 122–142 (2008)CrossRefGoogle Scholar
  29. 29.
    Yang, J.L., Chiu, H.N., Tzeng, G.H., Yeh, R.H.: Vendor selection by integrated fuzzy MCDM techniques with independent and interdependent relationships. Inf. Sci. 178, 4166–4183 (2008)CrossRefGoogle Scholar
  30. 30.
    Tseng, M.L., Chiang, J.H., Lan, L.W.: Selection of optimal supplier in supply chain management strategy with analytic network process and choquet integral. Comput. Ind. Eng. 57, 330–340 (2009)CrossRefGoogle Scholar
  31. 31.
    Razmi, J., Rafiei, H., Hashemi, M.: Designing a decision support system to evaluate and select suppliers using fuzzy analytic network process. Comput. Ind. Eng. 57, 1282–1290 (2009)CrossRefGoogle Scholar
  32. 32.
    Ordoobadi, S.M.: Application of AHP and Taguchi loss functions in supply chain. Ind. Manag. Data Syst. 110(8), 1251–1269 (2010)CrossRefGoogle Scholar
  33. 33.
    Ravindran, A.R., Bilsel, R.U., Wadhwa, V., Yang, T.: Risk adjusted multi-criteria supplier selection models with applications. Int. J. Prod. Res. 48(2), 405–424 (2010)CrossRefGoogle Scholar
  34. 34.
    Guo, L.L., Fang, Z.M.: Modeling study of lot-sizing in virtual enterprise based on multi-objective. In: 2011 IEEE 18th International Conference on Industrial Engineering and Engineering Management (IE&EM), pp. 933–937 (2011)Google Scholar
  35. 35.
    Chen, Z., Yang, W.: An MAGDM based on constrained FAHP and FTOPSIS and its application to supplier selection. Math. Comput. Model. 54, 2802–2815 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Liao, C.N., Kao, H.P.: An integrated fuzzy TOPSIS and MCGP approach to supplier selection in supply chain management. Expert Syst. Appl. 38, 10803–10811 (2011)CrossRefGoogle Scholar
  37. 37.
    Pitchipoo, P., Venkumar, P., Rajakarunakaran, S.: Fuzzy hybrid decision model for supplier evaluation and selection. Int. J. Prod. Res. 51(13), 3903–3919 (2013)CrossRefGoogle Scholar
  38. 38.
    Rodríguez, A., Ortega, F., Concepción, R.: A method for the selection of customized equipment suppliers. Expert Syst. Appl. 40, 1170–1176 (2013)CrossRefGoogle Scholar
  39. 39.
    Shidpour, H., Shahrokhi, M., Bernard, A.: A multi-objective programming approach, integrated into the TOPSIS method, in order to optimize product design; in three-dimensional concurrent engineering. Comput. Ind. Eng. 64, 875–885 (2013)CrossRefGoogle Scholar
  40. 40.
    Singh, A.: Supplier evaluation and demand allocation among suppliers in a supply chain. J. Purch. Supply Manag. 20, 167–176 (2014)CrossRefGoogle Scholar
  41. 41.
    Hashemian, S.M., Behzadian, M., Samizadeh, R., Ignatius, J.: A fuzzy hybrid group decision support system approach for the supplier evaluation process. Int. J. Adv. Manuf. Technol. 73(5–8), 1105–1117 (2014)CrossRefGoogle Scholar
  42. 42.
    Covella, G.J., Olsina, L.A.: Assessing quality in use in a consistent way. In: Proceedings of the 6th international Conference on Web Engineering, pp. 1–8, Palo Alto, California, USA. ACM Press, New York (2006)Google Scholar
  43. 43.
    Saaty, T.L.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill International, New York (1980)zbMATHGoogle Scholar
  44. 44.
    Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)Google Scholar
  45. 45.
    Cheng, C.H., Yang, K.L., Hwang, C.L.: Evaluating attack helicopters by AHP based on linguistic variables weight. Eur. J. Oper. Res. 116(2), 423–435 (1999)CrossRefGoogle Scholar
  46. 46.
    Wang, Y.M., Chin, K.S.: A linear goal programming priority method for fuzzy analytic hierarchy process and its applications in new product screening. Int. J. Approx. Reason. 49(2), 451–465 (2008)CrossRefGoogle Scholar
  47. 47.
    Mikhailov, L.: Deriving priorities from fuzzy pairwise comparison judgments. Fuzzy Sets Syst. 134(3), 365–385 (2003)CrossRefGoogle Scholar
  48. 48.
    Yager, R.R., Zadeh, L.A. (eds.): An Introduction to Fuzzy Logic Applications in Intelligent Systems, vol. 165. Springer, Berlin (2012). Scholar
  49. 49.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  50. 50.
    Ahmed, F., Kiliç, K.: Modification to fuzzy extent analysis method and its performance analysis. In: Proceedings of the 6th lESM Conference, Seville, Spain (2015)Google Scholar
  51. 51.
    Wang, Y.M., Elhag, T.M.S., Hua, Z.S.: A modified fuzzy logarithmic least squares method for fuzzy analytic hierarchy process. Fuzzy Sets Syst. 157, 3055–3071 (2006)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Seidel, J.V.: Qualitative data analysis (1998). Accessed May 2016
  53. 53.
    Van Vuuren, D., Maree, A.: Survey methods in market and media research. In: Research in practice: Applied methods for the social sciences, pp. 269–286 (1999)Google Scholar
  54. 54.
    Bailey, W.J., Masson, R., Raeside, R.: Choosing successful technology development partners: a best-practice model. Int. J. Technol. Manag. 15(1–2), 124–138 (1998)CrossRefGoogle Scholar
  55. 55.
    Culley, S.J., Boston, O.P., McMahon, C.A.: Suppliers in new product development: their information and integration. J. Eng. Des. 10(1), 59–75 (1999)CrossRefGoogle Scholar
  56. 56.
    Musumba, G.W., Wario, R.D.: Partner performance evaluation problem for construction projects. J. Appl. Sci. Eng. Technol. Dev. 2(1), 1–29 (2017)Google Scholar
  57. 57.
    Merriam, S.B.: Case Study Research in Education. Jossey-Bass, San Francisco (1988)Google Scholar
  58. 58.
    Creswell, J.W.: Research Design: Qualitative and Quantitative Approaches. Sage, Thousand Oaks (1994)Google Scholar
  59. 59.
    Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine, Chicago (1967)Google Scholar
  60. 60.
    Kwong, C.K., Bai, H.: A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. J. Intell. Manuf. 13(5), 367–377 (2002)CrossRefGoogle Scholar
  61. 61.
    Buckley, J.J.: Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17(3), 233–247 (1985)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets. FSHS, vol. 7, pp. 483–581. Springer, Boston (2000). Scholar
  63. 63.
    Tang, H., Zhang, J.: Study on fuzzy AHP group decision-making method based on set-valued statistics. In: FSKD, vol. 3, pp. 689–693 (2007)Google Scholar
  64. 64.
    Saaty, T.L., Kearns, K.P.: Analytical Planning: The Organization of System, vol. 7. Elsevier, Amsterdam (2014)Google Scholar
  65. 65.
    Chang, D.Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95(3), 649–655 (1996)CrossRefGoogle Scholar
  66. 66.
    Indrani, B.: On the use of information in analytic hierarchy process. Eur. J. Oper. Res. 141, 200–206 (2002)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Srdjevic, B.: Combining different prioritization methods in the analytic hierarchy process synthesis. Comput. Oper. Res. 32(7), 1897–1919 (2005)CrossRefGoogle Scholar
  68. 68.
    Mikhailov, L., Singh, M.G.: Comparison analysis of method for deriving priorities in the analytic hierarchy process. In: IEEE SMC 1999 Conference Proceedings of System, Man, and Cybernetics, vol. 1, pp. 1037–1042 (1999)Google Scholar
  69. 69.
    Golany, B., Kress, M.: A multi-criteria evaluation of methods for obtaining weights from ratio-scale matrices. Eur. J. Oper. Res. 69(2), 210–220 (1993)CrossRefGoogle Scholar
  70. 70.
    Karlsson, J., Wohlin, C., Regnell, B.: An evaluation of methods for prioritizing software requirements. Inf. Softw. Technol. 39(14–25), 939–947 (1998)CrossRefGoogle Scholar
  71. 71.
    Freeling, A.N.S.: Fuzzy sets and decision analysis. IEEE Trans. Syst. Man Cybern. 10, 341–354 (1980)CrossRefGoogle Scholar
  72. 72.
    Saaty, T.L., Tran, L.T.: On the invalidity of fuzzifying numerical judgments in the analytic hierarchy process. Math. Comput. Model. 46, 962–975 (2007)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Sanga, C., Venter, I.M.: Is a multi-criteria evaluation tool reserved for experts? Electron. J. Inf. Syst. Eval. (EJISE) 12(2), 165–176 (2009)Google Scholar
  74. 74.
    Rezaei, J., Ortt, R.: A multi-variable approach to supplier segmentation. Int. J. Prod. Res. 50(16), 4593–4611 (2012)CrossRefGoogle Scholar
  75. 75.
    Rezaei, J., Ortt, R.: Multi-criteria supplier segmentation using a fuzzy preference relations based AHP. Eur. J. Oper. Res. 225, 75–84 (2013)CrossRefGoogle Scholar
  76. 76.
    Akadiri, P.O., Olomolaiye, P.O., Chinyio, E.A.: Multi-criteria evaluation model for the selection of sustainable materials for building projects. Autom. Constr. 30, 113–125 (2013)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceDedan Kimathi University of TechnologyNyeriKenya
  2. 2.Department of Computer Science and InformaticsUniversity of Free StateBloemfonteinSouth Africa

Personalised recommendations