Advertisement

A Finite-State Morphological Analyzer for Wolaytta

  • Tewodros A. Gebreselassie
  • Jonathan N. Washington
  • Michael Gasser
  • Baye Yimam
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 244)

Abstract

This paper presents the development of a free/open-source finite-state morphological transducer for Wolaytta, an Omotic language of Ethiopia, using the Helsinki Finite-State Transducer toolkit (HFST). Developing a full-fledged morphological analysis tool for an under-resourced language like Wolaytta is an important step towards developing further NLP (Natural Language Processing) applications. Morphological analyzers for highly inflectional languages are most efficiently developed using finite-state transducers. To develop the transducer, a lexicon of root words was obtained semi-automatically. The morphotactics of the language were implemented by hand in the lexc formalism, and morphophonological rules were implemented in the twol formalism. Evaluation of the transducer shows as it has decent coverage (over 80%) of forms in a large corpus and exhibits high precision (94.85%) and recall (94.11%) over a manually verified test set. To the best of our knowledge, this work is the first systematic and exhaustive implementation of the morphology of Wolaytta in a morphological transducer.

Keywords

Wolaytta language Morphological analysis and generation HFST Apertium NLP 

References

  1. 1.
    Allen, J.: Natural language understanding (1987)Google Scholar
  2. 2.
    Gasser, M.: HornMorpho: a system for morphological processing of Amharic, Oromo, and Tigrinya. In: Conference on Human Language Technology for Development, Alexandria, Egypt (2011)Google Scholar
  3. 3.
    Mulugeta, W., Gasser, M.: Learning morphological rules for Amharic verbs using inductive logic programming. Lang. Technol. Normalisation Less-Resourced Lang. 7 (2012)Google Scholar
  4. 4.
    Wakasa, M.: A descriptive study of the modern Wolaytta language. Unpublished Ph.D. thesis, University of Tokyo (2008)Google Scholar
  5. 5.
    Lamberti, M., Roberto, S.: The Wolaytta Language, vol. 6. Rudiger Koppe, Cologne (1997)Google Scholar
  6. 6.
    Lessa, L.: Development of stemming algorithm for Wolaytta text. Diss. aau (2003)Google Scholar
  7. 7.
    Bosch, S.E., Pretorius, L.: A finite-state approach to linguistic constraints in Zulu morphological analysis. Studia Orientalia Electronica 103, 205–228 (2015)Google Scholar
  8. 8.
    Beesley, K.R., Karttunen, L.: Finite State Morphology. Center for the Study of Language and Information (2003)Google Scholar
  9. 9.
    Washington, J., Ipasov, M., Tyers, F.M.: A finite-State morphological transducer for Kyrgyz. In: LREC (2012)Google Scholar
  10. 10.
    Martin, J.H., Jurafsky, D.: Speech and Language Processing, International Edition 710 (2000)Google Scholar
  11. 11.
    Linden, K., Axelson, E., Hardwick, S., Silfverberg, M., Pirinen, T.: HFST—framework for compiling and applying morphologies. In: Mahlow, C., Pietrowski, M. (eds.) State of the Art in Computational Morphology. Communications in Computer and Information Science, vol. 100, pp. 67–85. Springer, Berlin Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23138-4_5CrossRefGoogle Scholar
  12. 12.
    Lindén, K., Silfverberg, M., Pirinen, T.: Hfst tools for morphology—an efficient open-source package for construction of morphological analyzers. In: Mahlow, C., Pietrowski, M. (eds.) State of the Art in Computational Morphology. Communications in Computer and Information Science, vol. 41, pp. 28–47. Springer, Berlin Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04131-0_3CrossRefzbMATHGoogle Scholar
  13. 13.
    Karttunen, L.: Finite-state lexicon compiler. Technical report ISTL-NLTT-1993-04-02, Xerox Palo Alto Research Center, Palo Alto, California (1993)Google Scholar
  14. 14.
    Oflazer, K.: Two-level description of Turkish morphology. In: Proceedings of the Sixth Conference on European Chapter of the Association for Computational Linguistics, EACL 1993, p. 472. Association for Computational Linguistics, Stroudsburg (1993)Google Scholar
  15. 15.
    Koskenniemi, K.: A general computational model for word form recognition and production. In: Proceedings of the 10th International Conference on Computational Linguistics, pp. 178–181. Association for Computational Linguistics (1984)Google Scholar
  16. 16.
    Grac, M.: Yet another formalism for morphological paradigm. In: Recent Advances in Slavonic Natural Language Processing, RASLAN 2009, p. 9 (2009)Google Scholar
  17. 17.
    Oflazer, K., Kuruoz, I.: Tagging and morphological disambiguation of Turkish text. In: Proceedings of the Fourth Conference on Applied Natural Language Processing, ANLC 1994, pp. 144–149. Association for Computational Linguistics, Stroudsburg (1994)Google Scholar
  18. 18.
    Yona, S., Wintner, S.: A finite-state morphological grammar of Hebrew. Nat. Lang. Eng. 14(02), 173–190 (2008)CrossRefGoogle Scholar
  19. 19.
    Malladi, D.K., Mannem, P.: Context based statistical morphological analyzer and its effect on Hindi dependency parsing. In: Fourth Workshop on Statistical Parsing of Morphologically Rich Languages, vol. 12, p. 119 (2013)Google Scholar
  20. 20.
    Eray Yildiz, C., Bahadir Sahin, H., Mustafa Tolga Eren, O.: A morphology-aware network for morphological disambiguation (2016)Google Scholar
  21. 21.
    Amsalu, S., Gibbon, D.: Finite state morphology of Amharic. In: Proceedings of RANLP (2005)Google Scholar
  22. 22.
    Goldwater, S., McClosky, D. Improving statistical MT through morphological analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 676–683. Association for Computational Linguistics (2005)Google Scholar
  23. 23.
    Washington, J., Salimzyanov, I., Tyers, F.M.: Finite-state morphological transducers for three Kypchak languages. In: Proceedings of LREC, pp. 3378–3385 (2014)Google Scholar
  24. 24.
    Beesley, K.R., Karttunen, L.: Finite-state non-concatenative morphotactics. In: Proceedings of the 38th Annual Meeting on Association for Computational Linguistics, pp. 191–198. Association for Computational Linguistics (2000)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Tewodros A. Gebreselassie
    • 1
  • Jonathan N. Washington
    • 2
  • Michael Gasser
    • 3
  • Baye Yimam
    • 1
  1. 1.Addis Ababa UniversityAddis AbabaEthiopia
  2. 2.Swarthmore CollegeSwarthmoreUSA
  3. 3.Indiana UniversityBloomingtonUSA

Personalised recommendations