Analysis of Optical and Recombination Losses in Solar Cells

  • Hiroyuki FujiwaraEmail author
  • Akihiro Nakane
  • Daisuke Murata
  • Hitoshi Tampo
  • Takuya Matsui
  • Hajime Shibata
Part of the Springer Series in Optical Sciences book series (SSOS, volume 214)


For efficient optimization of solar-cell device structures and processing, it is essential to reveal the performance-limiting optical and physical factors in solar cells. Quite fortunately, a global solar-cell characterization method has recently been developed from which the parasitic light absorption and carrier recombination in the devices are evaluated systematically based on external quantum efficiency (EQE) analysis. In this new method, the optical and recombination losses in complex solar cell structures are readily determined within the framework of a rather simple optical admittance method. The EQE analysis method described in this chapter is appropriate for a wide variety of photovoltaic devices, including crystalline Si (c-Si), hydrogenated amorphous silicon (a-Si:H), Cu(In,Ga)Se2 chalcopyrite, Cu2ZnSn(S,Se)4 kesterite, CdTe zincblende and hybrid perovskite solar cells, and provides excellent fitting to numerous EQE spectra obtained experimentally. This chapter introduces the basic concept of the global EQE analysis method in which the effects of (i) light scattering by submicron textures and (ii) carrier recombination in light absorbers are fully incorporated. As examples, the EQE analyses of Cu(In,Ga)Se2, Cu2ZnSnSe4, Cu2ZnSnS4, CdTe, a-Si:H and c-Si solar cells are described. Based on the analysis results, we will further discuss the carrier loss mechanisms in different types of photovoltaic devices.


  1. 1.
    This concept appears to be introduced first by Dr. Stefan W. Glunz, Fraunhofer ISEGoogle Scholar
  2. 2.
    M. Lavagna, J.P. Pique, Y. Marfaing, Solid State Electron. 20, 235 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    X.X. Liu, J.R. Sites, J. Appy. Phys. 75, 577 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    J. Sinkkonen, J. Ruokolainen, P. Uotila, A. Hovinen, Appl. Phys. Lett. 66, 206 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    J. Mattheis, P.J. Rostan, U. Rau, J.H. Werner, Sol. Eng. Mater. Sol. Cells 91, 689 (2007)CrossRefGoogle Scholar
  6. 6.
    K. Ding, T. Kirchartz, B.E. Pieters, C. Ulbrich, A.M. Ermes, S. Schicho, A. Lambertz, R. Carius, U. Rau, Sol. Eng. Mater. Sol. Cells 95, 3318 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Agrawal, M. Frei, Prog. Photovolt. 20, 442 (2012)CrossRefGoogle Scholar
  8. 8.
    C. Haase, H. Stiebig, Prog. Photovolt. 14, 629 (2006)CrossRefGoogle Scholar
  9. 9.
    Y. Sago, H. Fujiwara, Jpn. J. Appl. Phys. 51, 10NB01 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Zeman, O. Isabella, S. Solntsev, K. Jäger, Sol. Energy Mater. Sol. Cells 119, 94 (2013)CrossRefGoogle Scholar
  11. 11.
    Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, C. Ballif, IEEE J. Photovolt. 2, 7 (2012)CrossRefGoogle Scholar
  12. 12.
    Z.C. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, C. Ballif, J. Appl. Phys. 113, 013107 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    D. Zhang, I.A. Digdaya, R. Santbergen, R.A.C.M.M. van Swaaij, P. Bronsveld, M. Zeman, J.A.M. van Roosmalen, A.W. Weeber, Sol. Eng. Mater. Sol. Cells 117, 132 (2013)CrossRefGoogle Scholar
  14. 14.
    M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D.B. Mitzi, Energy Environ. Sci. 7, 1029 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Kosyachenko, T. Toyama, Sol. Energy Mater. Sol. Cells 120, 512 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, H. Fujiwara, Phys. Rev. Appl. 2, 034012 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, H. Fujiwara, Phys. Rev. Appl. 5, 014012 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim, S. Kim, H. Shibata, S. Niki, H. Fujiwara, J. Appl. Phys. 120, 064505 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    J. Zhao, A. Wang, M.A. Green, F. Ferrazza, Appl. Phys. Lett. 73, 1991 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    J. Benick, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, O. Schultz, S.W. Glunz, Appl. Phys. Lett. 92, 253504 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, S. Guha, Adv. Energy Mater. 5, 1401372 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T.K. Todorov, D.B. Mitzi, Energy Environ. Sci. 5, 7060 (2012)CrossRefGoogle Scholar
  23. 23.
    J.-O. Jeon, K.D. Lee, L.S. Oh, S.-W. Seo, D.-K. Lee, H. Kim, J.-H. Jeong, M.J. Ko, B. Kim, H.J. Son, J.Y. Kim, Chemsuschem 7, 1073 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Redinger, M. Mousel, M.H. Wolter, N. Valle, S. Siebentritt, Thin Solid Films 535, 291 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, S. Siebentritt, Prog. Photovolt. 22, 51 (2014)CrossRefGoogle Scholar
  26. 26.
    A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, Appl. Phys. Lett. 65, 198 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R. Noufi, D.G. Jensen, A.M. Hermann, Sol. Eng. Mater. Sol. Cells 41/42, 247 (1996)Google Scholar
  28. 28.
    M.A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, R. Noufi, Sol. Eng. Mater. Sol. Cells 41/42, 231 (1996)Google Scholar
  29. 29.
    B. Shin, N.A. Bojarczuk, S. Guha, Appl. Phys. Lett. 102, 091907 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S.C. Baker-Finch, K.R. McIntosh, Prog. Photovolt. 19, 406 (2011)CrossRefGoogle Scholar
  31. 31.
    C. Haase, H. Stiebig, Appl. Phys. Lett. 91, 061116 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, Prog. Photovolt. 21, 94 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson, R. Kniese, Thin Solid Films 517, 2111 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    H.A. Macleod, Thin-Film Optical Filters (CRC Press, NY, 2010)CrossRefGoogle Scholar
  35. 35.
    E. Hecht, Optics, 4th edn. (Addison Wesley, San Francisco, 2002)Google Scholar
  36. 36.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, UK, 2007)CrossRefGoogle Scholar
  37. 37.
    J.A. Berning, P.H. Berning, J. Opt. Soc. Am. 50, 813 (1960)ADSCrossRefGoogle Scholar
  38. 38.
    F. Zhu, J. Singh, Sol. Energy Mater. Sol. Cells 31, 119 (1993)CrossRefGoogle Scholar
  39. 39.
    J. Krc, M. Zeman, F. Smole, M. Topic, J. Appl. Phys. 92, 749 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, West Sussex, UK, 2011)Google Scholar
  41. 41.
    R. Klenk, H. Schock, W. Bloss, in Proceeding of the 12th European Conference on Photovoltaic Solar Energy Conversion (EUPVSEC, Amsterdam, 1994), p. 1588Google Scholar
  42. 42.
    T. Gokmen, O. Gunawan, D.B. Mitzi, J. Appl. Phys. 114, 114511 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt. 21, 72 (2013)CrossRefGoogle Scholar
  44. 44.
    T. Fukano, S. Tajima, T. Ito, Appl. Phys. Express 6, 062301 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    M.G. Gang, K.V. Gurav, S.W. Shin, C.W. Hong, J.H. Min, M.P. Suryawanshi, S.A. Vanalakar, D.S. Lee, J.H. Kim, Phys. Status Solidi C 12, 713 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    T.P. Dhakal, C.-Y. Peng, R.R. Tobias, R. Dasharathy, C.R. Westgate, Sol. Energy 100, 23 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    H. Cui, X. Liu, F. Liu, X. Hao, N. Song, C. Yan, Appl. Phys. Lett. 104, 041115 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    I.L. Repins, H. Moutinho, S.G. Choi, A. Kanevce, D. Kuciauskas, P. Dippo, C.L. Beall, J. Carapella, C. DeHart, B. Huang, S.H. Wei, J. Appl. Phys. 114, 084507 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    T.K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22, E156 (2010)CrossRefGoogle Scholar
  50. 50.
    I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154 (2012)CrossRefGoogle Scholar
  51. 51.
    S. Oueslati, G. Brammertz, M. Buffière, H. ElAnzeery, O. Touayar, C. Köble, J. Bekaert, M. Meuris, J. Poortmans, Thin Solid Films 582, 224 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    A. Ennaoui, M.L. Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, Thin Solid Films 517, 2511 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, Adv. Energy Mater. 2, 253 (2012)CrossRefGoogle Scholar
  54. 54.
    J.J. Scragg, T. Ericson, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, T. Kubart, M. Edoff, C. Platzer-Björkman, Prog. Photovolt. 22, 10 (2014)CrossRefGoogle Scholar
  55. 55.
    F. Zhou, F. Zeng, X. Liu, F. Liu, N. Song, C. Yan, A. Pu, J. Park, K. Sun, X. Hao, A.C.S. Appl, Mater. Interfaces 7, 22868 (2015)CrossRefGoogle Scholar
  56. 56.
    J. Kim, H. Hiroi, T.K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y.S. Lee, W. Wang, H. Sugimoto, D.B. Mitzi, Adv. Mater. 26, 7427 (2014)CrossRefGoogle Scholar
  57. 57.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  58. 58.
    C.J. Hages, S. Levcenco, C.K. Miskin, J.H. Alsmeier, D. Abou-Ras, R.G. Wilks, M. Bär, T. Unold, R. Agrawal, Prog. Photovolt. 23, 376 (2015)CrossRefGoogle Scholar
  59. 59.
    G. Larramona, S. Bourdais, A. Jacob, C. Choné, T. Muto, Y. Cuccaro, B. Delatouche, C. Moisan, D. Péré, G. Dennler, J. Phys. Chem. Lett. 5, 3763 (2014)CrossRefGoogle Scholar
  60. 60.
    H. Xie, M. Dimitrievska, X. Fontané, Y. Sánchez, S.L. Marino, V. Izquierdo-Roca, V. Bermúdez, A. Pérez-Rodríguez, E. Saucedo, Sol. Energy Mater. Sol. Cells 140, 289 (2015)Google Scholar
  61. 61.
    Q. Guo, G.M. Ford, W.-C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc. 132, 17384 (2010)CrossRefGoogle Scholar
  62. 62.
    H. Xin, J.K. Katahara, I.L. Braly, H.W. Hillhouse, Adv. Energy Mater. 4, 1301823 (2014)CrossRefGoogle Scholar
  63. 63.
    C.K. Miskin, W.-C. Yang, C.J. Hages, N.J. Carter, C.S. Joglekar, E.A. Stach, R. Agrawal, Prog. Photovolt. 23, 654 (2015)CrossRefGoogle Scholar
  64. 64.
    G. Larramona, S. Levcenko, S. Bourdais, A. Jacob, C. Choné, B. Delatouche, C. Moisan, J. Just, T. Unold, G. Dennler, Adv. Energy Mater. 5, 1501404 (2015)CrossRefGoogle Scholar
  65. 65.
    A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, A.N. Tiwari, Nat. Mater. 10, 857 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    M. Bär, S. Nishiwaki, L. Weinhardt, S. Pookpanratana, W.N. Shafarman, C. Heske, Appl. Phys. Lett. 93, 042110 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, D.B. Mitzi, Appl. Phys. Lett. 98, 253502 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    T. Kato, H. Hiroi, N. Sakai, H. Sugimoto, in Proceeding of the 28th European Photovoltaic Solar Energy Conference (EUPVSEC, Paris, 2013), p. 2125Google Scholar
  69. 69.
    I.L. Repins, M.J. Romero, J.V. Li, S.-H. Wei, D. Kuciauskas, C.-S. Jiang, C. Beall, C. DeHart, J. Mann, W.-C. Hsu, G. Teeter, A. Goodrich, R. Noufi, IEEE J. Photovolt. 3, 439 (2013)CrossRefGoogle Scholar
  70. 70.
    B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Appl. Phys. Lett. 101, 053903 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, M. Murozono, Jpn. J. Appl. Phys. 36, 6304 (1997)ADSCrossRefGoogle Scholar
  72. 72.
    C.S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, D.L. Morel, Thin Solid Films 361–362, 520 (2000)CrossRefGoogle Scholar
  73. 73.
    N. Romeo, A. Bosio, V. Canevari, A. Podestà, Sol. Energy 77, 795 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    J. Chen, J. Li, D. Sainju, K.D. Wells, N.J. Podraza, R.W. Collins, in Proceedings of IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, New York, 2006), p. 711Google Scholar
  75. 75.
    S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors (Kluwer Academic Publishers, Norwell, 1999)CrossRefGoogle Scholar
  76. 76.
    B.E. McCandless, L.V. Moulton, R.W. Birkmire, Prog. Photovolt. 5, 249 (1997)CrossRefGoogle Scholar
  77. 77.
    B.E. McCandless, K.D. Dobson, Sol. Energy 77, 839 (2004)ADSCrossRefGoogle Scholar
  78. 78.
    B.A. Korevaar, A. Halverson, J. Cao, J. Choi, C. Collazo-Davila, W. Huber, Thin Solid Films 535, 229 (2013)ADSCrossRefGoogle Scholar
  79. 79.
    J. Li, D.R. Diercks, T.R. Ohno, C.W. Warren, M.C. Lonergan, J.D. Beach, C.A. Wolden, Sol. Energy Mater. Sol. Cells 133, 208 (2015)CrossRefGoogle Scholar
  80. 80.
    N. Strevel, L. Trippel, C. Kotarba, I. Khan, Photovolt. Int. 22, 66 (2014)Google Scholar
  81. 81.
    D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292 (1977)ADSCrossRefGoogle Scholar
  82. 82.
    T. Matsui, A. Bidiville, K. Maejima, H. Sai, T. Koida, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, Appl. Phys. Lett. 106, 053901 (2015)ADSCrossRefGoogle Scholar
  83. 83.
    T. Yuguchi, Y. Kanie, N. Matsuki, H. Fujiwara, J. Appl. Phys. 111, 083509 (2012)ADSCrossRefGoogle Scholar
  84. 84.
    A. Nakane, S. Fujimoto, H. Fujiwara, J. Appl. Phys. 122, 203101 (2017)ADSCrossRefGoogle Scholar
  85. 85.
    B. Harbecke, Appl. Phys. B 39, 165 (1986)ADSCrossRefGoogle Scholar
  86. 86.
    M.C. Troparevsky, A.S. Sabau, A.R. Lupini, Z. Zhang, Opt. Expr. 18, 24715 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    R. Santbergen, A.H.M. Smets, M. Zeman, Opt. Expr. 21, A262 (2013)ADSCrossRefGoogle Scholar
  88. 88.
    H. Fujiwara, H. Sai, M. Kondo, Jpn. J. Appl. Phys. 48, 064506 (2009)ADSCrossRefGoogle Scholar
  89. 89.
    M. Sato, S.W. King, W.A. Lanford, P. Henry, T. Fujiseki, H. Fujiwara, J. Non-Cryst, Solids 440, 49 (2016)Google Scholar
  90. 90.
    J.P. Seif, A. Descoeudres, M. Filipič, F. Smole, M. Topič, Z.C. Holman, S. De Wolf, C. Ballif, J. Appl. Phys. 115, 024502 (2014)ADSCrossRefGoogle Scholar
  91. 91.
    S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, Prog. Photovoltaics 18, 453 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hiroyuki Fujiwara
    • 1
    Email author
  • Akihiro Nakane
    • 1
  • Daisuke Murata
    • 1
  • Hitoshi Tampo
    • 2
  • Takuya Matsui
    • 2
  • Hajime Shibata
    • 2
  1. 1.Gifu UniversityGifuJapan
  2. 2.Research Center for Photovoltaics, National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations