Advertisement

Organic-Inorganic Hybrid Perovskites

  • Shohei Fujimoto
  • Takemasa Fujiseki
  • Masato Tamakoshi
  • Akihiro Nakane
  • Tetsuhiko Miyadera
  • Takeshi Sugita
  • Takurou N. Murakami
  • Masayuki Chikamatsu
  • Hiroyuki FujiwaraEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 214)

Abstract

The dielectric functions and optical constants of various organic-inorganic hybrid perovskite semiconductors, including HC(NH2)2PbI3, CH3NH3PbI3, CH3NH3PbBr3 and CH3NH3PbCl3, are summarized. For CH3NH3Pb(I, Br)3 alloys, the variation of the dielectric function with Br content, calculated by applying the energy shift model, is presented. This chapter also provides the optical constants of perovskite secondary phases, such as semitransparent δ-phase HC(NH2)2PbI3, PbI2 and CH3NH3I. It has been established that the dielectric functions of all the hybrid perovskite compounds can be parameterized by assuming several transition peaks calculated from the Tauc-Lorentz model. In particular, by incorporating Tauc-Lorentz peaks with very small amplitudes, the absorption coefficient spectra of the hybrid perovskites are reproduced almost perfectly in a quite wide range of α = 102–106 cm−1. In this chapter, the Tauc-Lorentz parameters obtained from the above parameterization scheme are summarized, together with the tabulated optical constants.

References

  1. 1.
    H. Fujiwara, M. Kato, M. Tamakoshi, T. Miyadera, M. Chikamatsu, Phys. Status Solidi A 215, 1700730 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, H. Fujiwara, Phys. Rev. Appl. 5, 014012 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim, S. Kim, H. Shibata, S. Niki, H. Fujiwara, J. Appl. Phys. 120, 064505 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    G. E. Jellison, Jr., F. A. Modine, Appl. Phys. Lett. 69, 371 (1996). Erratum, Appl. Phys. Lett. 69, 2137 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kato, T. Fujiseki, T. Miyadera, T. Sugita, S. Fujimoto, M. Tamakoshi, M. Chikamatsu, H. Fujiwara, J. Appl. Phys. 121, 115501 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    A.M.A. Leguy, P. Azarhoosh, M.I. Alonso, M. Campoy-Quiles, O.J. Weber, J. Yao, D. Bryant, M.T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, P.R.F. Barnes, Nanoscale 8, 6317 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    P.G. Snyder, J.A. Woollam, S.A. Alterovitz, B. Johs, J. Appl. Phys. 68, 5925 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    J.-S. Park, S. Choi, Y. Yan, Y. Yang, J.M. Luther, S.-H. Wei, P. Parilla, K. Zhu, J. Phys. Chem. Lett. 6, 4304 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shohei Fujimoto
    • 1
  • Takemasa Fujiseki
    • 1
  • Masato Tamakoshi
    • 1
  • Akihiro Nakane
    • 1
  • Tetsuhiko Miyadera
    • 2
  • Takeshi Sugita
    • 2
  • Takurou N. Murakami
    • 2
  • Masayuki Chikamatsu
    • 2
  • Hiroyuki Fujiwara
    • 1
    Email author
  1. 1.Gifu UniversityGifuJapan
  2. 2.Research Center for PhotovoltaicsNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations