Sector Coupling for an Integrated Low-Carbon Energy Transformation: A Techno-Economic Introduction and Application to Germany

  • Jens WeibezahnEmail author


While the first phase of the energiewende, focusing on the electricity sector, was largely successful, the second phase needs to focus on all energy usage, especially heat, transportation, and usage as a raw material in the chemical industry. In that context, intensified “sector coupling” will be required, accompanied by a further shift from fossil fuels to renewable ones. This chapter provides an overview of the upcoming challenges in the next phase of the energiewende, by focusing on the technical and economic challenges of coupling electricity, heat, and transportation, in an attempt to advance the low-carbon transformation. We apply the concepts to the ongoing energiewende in Germany. By intensifying the links between the sectors, one can harvest “low-hanging fruits” in terms of flexibility and fuel switching from fossil to renewable energies. This is a precondition to attain the ambitious targets of the energiewende with respect to CO2 emission reductions. While this chapter focusses on Germany, the technical and economic arguments are valid at a broader scale, and apply to other transformation processes as well. Section 9.2 describes the basic idea of “sector coupling”, until recently a widely unknown concept, including a schematic stylized scheme. In Section 9.3 we describe how sector coupling might evolve in the transportation and heating sectors, and that far-reaching electrification is at the core of the process. Section 9.4 provides some concrete quantitative scenarios for sector coupling for the case of Germany to 2030 and to 2050, based on a rapidly growing body of recent literature. While there is consensus on the feasibility of reaching ambitious decarbonization targets, different models suggest different pathways of reaching them. The role of synthetic fuels (domestic and/or imported) is controversially discussed. Section 9.5 concludes.


Sector coupling Electricity Transportation Heat Cooling Industry Households Decarbonization Germany 2030 2050 


  1. acatech, Leopoldina, and Akademienunion. 2017. Sektorkopplung – Optionen für die nächste Phase der Energiewende. München.Google Scholar
  2. Adeniyi, Oladapo Martins, Ulugbek Azimov, and Alexey Burluka. 2018. Algae biofuel: current status and future applications. Renewable and Sustainable Energy Reviews 90 (July): 316–335.CrossRefGoogle Scholar
  3. Agora Energiewende. 2018. Energiewende 2030: The Big Picture – Megatrends, Targets, Strategies and a 10-Point Agenda for the Second Phase of Germany’s Energy Transition. Impulse. Berlin.Google Scholar
  4. Agora Energiewende, and Agora Verkehrswende. 2018. The Future Cost of Electricity-Based Synthetic Fuels. Study. Berlin.Google Scholar
  5. Ausfelder, Florian, Frank-Detlef Drake, Berit Erlach, Manfred Fischedick, Hans-Martin Henning, Christoph Kost, Wolfram Münch, et al. 2017. Sektorkopplung – Untersuchungen und Überlegungen zur Entwicklung eines integrierten Energiesystems. Schriftenreihe Energiesysteme der Zukunft. München.Google Scholar
  6. Bloess, Andreas, Wolf-Peter Schill, and Alexander Zerrahn. 2018. Power-to-heat for renewable energy integration: a review of technologies, modeling approaches, and flexibility potentials. Applied Energy 212 (February): 1611–1626.CrossRefGoogle Scholar
  7. BMWi. 2016. Grünbuch Energieeffizienz – Diskussionspapier des Bundesministerium für Wirtschaft und Energie. Berlin.Google Scholar
  8. BMWi, and BMUB. 2010. Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. Berlin.Google Scholar
  9. Brown, T., D. Schlachtberger, A. Kies, S. Schramm, and M. Greiner. 2018. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable european energy system. Energy 160 (October): 720–739.CrossRefGoogle Scholar
  10. Buttler, Alexander, and Hartmut Spliethoff. 2018. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renewable and Sustainable Energy Reviews 82 (February): 2440–2454.CrossRefGoogle Scholar
  11. Naegler, Tobias, Sonja Simon, Martin Klein, and Hans Christian Gils. 2015. Quantification of the European industrial heat demand by branch and temperature level. International Journal of Energy Research 39 (15): 2019–2030.CrossRefGoogle Scholar
  12. Naegler, Tobias, Sonja Simon, Hans Christian Gils, and Martin Klein. 2016. Potenziale für erneuerbare Energien in der industriellen Wärmeerzeugung. BWK – Das Energie-Fachmagazin 68 (6/2016): 20–24.Google Scholar
  13. Quaschning, Volker. 2016. Sektorkopplung durch die Energiewende – Anforderungen an den Ausbau erneuerbarer Energien zum Erreichen der Pariser Klimaschutzziele unter Berücksichtigung der Sektorkopplung. Berlin.Google Scholar
  14. Schill, Wolf-Peter, and Clemens Gerbaulet. 2015. Power system impacts of electric vehicles in Germany: charging with coal or renewables? Applied Energy 156 (October): 185–196.CrossRefGoogle Scholar
  15. SRU. 2017. Umsteuern erforderlich: Klimaschutz im Verkehrssektor. Sondergutachten. Berlin.Google Scholar
  16. Wietschel, Martin, Patrick Plötz, Benjamin Pfluger, Marian Klobasa, Anke Eßer, Michael Haendel, Joachim Müller-Kirchenbauer, et al. 2018. Sektorkopplung – Definition, Chancen und Herausforderungen. S 01/2018. Working Paper Sustainability and Innovation. Karlsruhe: Fraunhofer ISI.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TU BerlinBerlinGermany

Personalised recommendations