The Role of Electricity Transmission Infrastructure

  • Clemens GerbauletEmail author


The infrastructure required to assure a reliable, clean, and economic electricity system is among the crucial conditions that have to be established for the energiewende to succeed. This chapter summarizes issues surrounding electricity transmission in the context of the energiewende. Even though infrastructure is an important ingredient of the energiewende, its importance has been exaggerated in the policy debate and in the public debate as well. Often hailed as a “critical factor” in the energiewende—and sometimes as the final nail in its coffin—transmission infrastructure has not been a demonstrable obstacle to the energiewende thus far, thanks to the highly developed network inherited from the old system and its continuous improvement over the last decade. Even in the medium term—that is, into the 2020s—no serious roadblocks for the energiewende are to be expected, provided that the transmission system operators (TSOs) and regulatory agencies stick to the path of transmission expansion that has proven reliable so far. Sections 8.2 and 8.3 describe network planning and development from its inception in the 2000s until today. Over this period, a new method of transmission planning has been implemented, creating more transparency for transmission policies, which had not been open to public scrutiny under the old system. Section 8.4 then traces a decade of network development in Germany. As elaborated in detail, rates of transmission investment remain consistent over the years, and important connections, such as links between the former GDR and West Germany have been completed. Section 8.5 discusses the current debate of introducing multiple price zones in Germany. Moreover, it summarizes results of a study on the effects of establishing multiple price zones in Germany suggesting that there is no need to split the German electricity market into zones. Section 8.6 details an interesting recent development: the explicit integration of carbon dioxide (CO2) constraints into network planning. Finally, Sect. 8.7 concludes.


Electricity transmission Network planning Copper plate Congestion management Bidding zones Climate policy 


  1. BMWi. 2015a. An Electricity Market for Germany’s Energy Transition – White Paper by the Federal Ministry for Economic Affairs and Energy. Berlin.Google Scholar
  2. ———. 2015b. The Energy of the Future, Fourth ‘Energy Transition’ Monitoring Report – Summary. Berlin.Google Scholar
  3. Boll, Georg. 1969. Geschichte des Verbundbetriebs: Entstehung und Entwicklung des Verbundbetriebs in der deutschen Elektrizitätswirtschaft bis zum europäischen Verbund. Frankfurt/Main: Verlags- u. Wirtschaftsgesellschaft der Elektrizitätswerke.Google Scholar
  4. Breuer, Christopher, and Albert Moser. 2014. Optimized Bidding Area Delimitations and Their Impact on Electricity Markets and Congestion Management. In IEEE proceedings. Kraków: IEEE.Google Scholar
  5. Burstedde, Barbara. 2012. From Nodal to Zonal Pricing: A Bottom-up Approach to the Second-Best. In EEM proceedings, Florence.Google Scholar
  6. Consentec, and Frontier Economics. 2011. Relevance of Established National Bidding Areas for European Power Market Integration – an Approach to Welfare Oriented Evaluation. Study commissioned by the Federal Network Agency (BNetzA), Cologne and Bonn.Google Scholar
  7. dena. 2005. dena-Netzstudie I (Endbericht) – Energiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020. Cologne: Deutsche Energie-Agentur GmbH.Google Scholar
  8. ———. 2010. dena-Netzstudie II (Endbericht) – Integration erneuerbarer Energien in die deutsche Stromversorgung im Zeitraum 2015-2020 mit Ausblick auf 2025. Berlin: Deutsche Energie-Agentur GmbH.Google Scholar
  9. Egerer, Jonas, Lucas Bückers, Gregor Drondorf, Clemens Gerbaulet, Paul Hörnicke, Rüdiger Säurich, Claudia Schmidt, et al. 2009. Sustainable Energy Networks for Europe – The Integration of Large-Scale Renewable Energy Sources until 2050. Electricity Market working papers WP-EM-35, Dresden.Google Scholar
  10. Egerer, Jonas, Clemens Gerbaulet, Richard Ihlenburg, Friedrich Kunz, Benjamin Reinhard, Christian von Hirschhausen, Alexander Weber, and Jens Weibezahn. 2014. Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets. DIW data documentation 72, Berlin.Google Scholar
  11. Egerer, Jonas, Jens Weibezahn, and Hauke Hermann. 2016. Two price zones for the German electricity market – market implications and distributional effects. Energy Economics 59 (September): 365–381.CrossRefGoogle Scholar
  12. ENTSO-E. 2010. Ten-Year Network Development Plan 2010 – 2020. Final report. Brussels: European Network of Transmission System Operators for Electricity.Google Scholar
  13. ———. 2018. First Edition of the Bidding Zone Review. Final report, Brussels.Google Scholar
  14. EnWG. 2011. Gesetz über die Elektrizitäts- und Gasversorgung (Energiewirtschaftsgesetz - EnWG) Novelle 2011.Google Scholar
  15. Eyre, Sebastian, and Michael G. Pollitt. 2016. Competition and Regulation in Electricity Markets, The International Library of Critical Writings in Economics 315. Cheltenham: Edward Elgar Publishing.CrossRefGoogle Scholar
  16. Gerbaulet, Clemens. 2017. Electricity Sector Decarbonization in Germany and Europe - a Model-Based Analysis of Operation and Infrastructure Investments. Berlin: Technische Universität Berlin.Google Scholar
  17. Gerbaulet, Clemens, Jonas Egerer, Pao-Yu Oei, Judith Paeper, and Christian von Hirschhausen. 2012. Die Zukunft der Braunkohle in Deutschland im Rahmen der Energiewende. DIW Berlin, Politikberatung kompakt 69. Berlin: Deutsches Institut für Wirtschaftsforschung (DIW).Google Scholar
  18. Jarass, Lorenz, and Anna Jarass. 2016. Integration von erneuerbarem Strom: Stromüberschüsse und Stromdefizite – mit Netzentwicklungsplan 2025, MV-Wissenschaft. 1st ed. Münster: Verl.-Haus Monsenstein und Vannerdat.Google Scholar
  19. Jarass, Lorenz, and Gustav M. Obermair. 2012. Welchen Netzumbau erfordert die Energiewende? – Unter Berücksichtigung des Netzentwicklungsplans 2012. Münster: Verl.-Haus Monsenstein und Vannerdat.Google Scholar
  20. Kemfert, Claudia, Friedrich Kunz, and Juan Rosellón. 2016. A welfare analysis of electricity transmission planning in Germany. Energy Policy 94: 446–452.CrossRefGoogle Scholar
  21. Leuthold, Florian, Hannes Weigt, and Christian von Hirschhausen. 2012. A large-scale spatial optimization model of the European electricity market. Networks and Spatial Economics 12 (1): 75–107.CrossRefGoogle Scholar
  22. Mieth, Robert, Clemens Gerbaulet, Christian von Hirschhausen, Claudia Kemfert, Friedrich Kunz, and Richard Weinhold. 2015a. Perspektiven für eine sichere, preiswerte und umweltverträgliche Energieversorgung in Bayern. DIW Berlin, Politikberatung kompakt 97. Berlin: Deutsches Institut für Wirtschaftsforschung (DIW).Google Scholar
  23. Mieth, Robert, Richard Weinhold, Clemens Gerbaulet, Christian von Hirschhausen, and Claudia Kemfert. 2015b. Electricity Grids and Climate Targets: New Approaches to Grid Planning. DIW Economic Bulletin 5/2015, Berlin.Google Scholar
  24. Olmos, Luis, and Ignacio J. Pérez-Arriaga. 2009. A comprehensive approach for computation and implementation of efficient electricity transmission network charges. Energy Policy 37 (12): 5285–5295.CrossRefGoogle Scholar
  25. Schröder, Andreas, Pao-Yu Oei, Aram Sander, Lisa Hankel, and Lilian Laurisch. 2013. The integration of renewable energies into the German transmission grid - a scenario comparison. Energy Policy 61: 140–150.CrossRefGoogle Scholar
  26. The Brattle Group. 2007. International Review of Transmission Planning Arrangements. A report for the Australian Energy Market Commission. Brussels: The Brattle Group.Google Scholar
  27. Trepper, Katrin, Michael Bucksteeg, and Christoph Weber. 2013. An Integrated Approach to Model Redispatch and to Assess Potential Benefits from Market Splitting in Germany. EWL working paper 19/2013. Essen: Chair for Management Science and Energy Economics University of Duisburg-Essen.Google Scholar
  28. ———. 2015. Market splitting in Germany – new evidence from a three-stage numerical model of Europe. Energy Policy 87: 199–215.CrossRefGoogle Scholar
  29. Weber, Alexander, Thorsten Beckers, Patrick Behr, Nils Bieschke, Stella Fehner, and Christian von Hirschhausen. 2013. Long-Term Power System Planning in the Context of Changing Policy Objectives – Conceptual Issues and Selected Evidence from Europe. Study commissioned by Smart Energy for Europe Platform (SEFEP).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TU BerlinBerlinGermany
  2. 2.DIW BerlinBerlinGermany

Personalised recommendations