Advertisement

Renewable Energy Sources as the Cornerstone of the German Energiewende

  • Jonas EgererEmail author
  • Pao-Yu Oei
  • Casimir Lorenz
Chapter

Abstract

At least since the 1980 study on the energiewende by Krause et al. (Energie-Wende: Wachstum und Wohlstand ohne Erdöl und Uran. Frankfurt am Main: S. Fischer), renewable energies have been considered a viable alternative to conventional fossil fuels, and renewable energy technologies were seen as a “soft path” towards a more sustainable energy system. The German government’s Energy Concept for 2050 declared the development of renewables as its number one energy priority. The share of renewables in primary energy consumption was to rise to above 60% by 2050 (2020: 18%, 2030: 30%, 2040: 45%) and targets for the share of renewables in electricity consumption were set even higher: at least 80% by 2050 (2020: 35%, 2030: 50%, 2040: 65%). Renewables have thus become a cornerstone of the current energiewende. This chapter discusses specific features of the German path toward a renewables-based electricity system and some challenges it is facing along the way. It also reports on the implications of a renewables-based electricity system for price formation and interrelations with conventional power plants. Section 6.2 recalls the development of renewables in Germany over the last 25 years from a niche source following the first feed-in law of 1990 to what has become Germany’s number one electricity source since 2014, contributing over one third of the total supply and leaving lignite, coal, natural gas, and nuclear behind. We also survey the employment impacts of renewables. In Section 6.3, we argue that a renewables-based electricity system works very differently than the previous conventional system, for example, with respect to price formation, the dominant weight of fixed costs, the disappearing wedge between “peak” and “base” load, and the increasing role of flexibility. Section 6.4 takes a look at the issue of costs in the renewables transformation of the energy system, both from an aggregate perspective and from the perspective of individual technologies. The section also compares the costs of renewables with conventional generation (coal and nuclear), taking a public economics perspective, considering, for instance, the external (social) costs. We find that the renewables-based energiewende is welfare-enhancing compared to the high social costs of the previous fossil and nuclear-based energy system. Section 6.5 concludes.

Keywords

Renewable energy Feed-in tariff Market premium German renewable energy law (EEG) Solar power Wind Biomass Employment Residual load Market design 

References

  1. Agora Energiewende. 2013. 12 Insights on Germany’s Energiewende. A discussion paper exploring key challenges for the power sector, Berlin.Google Scholar
  2. Thorsten Beckers, and Albert Hoffrichter. 2014. Grundsätzliche und aktuelle Fragen des institutionellen Stromsektordesigns – Eine institutionenökonomische Analyse zur Bereitstellung und Refinanzierung von Erzeugungsanlagen mit Fokus auf FEE.Google Scholar
  3. BMU. 2012. Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global. Schlussbericht BMU-FKZ 03MAP146. Stuttgart: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart Institut für Technische Thermodynamik,Fraunhofer Institut (IWES), Kassel Ingenieurbüro für neue Energien (IFNE).Google Scholar
  4. BMWi, and BMU. 2010. Energy Concept – for an Environmentally Sound, Reliable and Affordable Energy Supply. Berlin.Google Scholar
  5. Boccard, Nicolas. 2014. The cost of nuclear electricity: France after Fukushima. Energy Policy 66 (March): 450–461.CrossRefGoogle Scholar
  6. Cramton, Peter, and Axel Ockenfels. 2011. Economics and Design of Capacity Markets for the Power Sector. Maryland: University of Maryland, University of Cologne.Google Scholar
  7. Cramton, Peter, and Steven Stoft. 2005. A Capacity Market that Makes Sense. The Electricity Journal 18 (7): 43–54.CrossRefGoogle Scholar
  8. Deutsch, Matthias, and Patrick Graichen. 2015. What If… There Were a Nationwide Rollout of PV Battery Systems? Berlin: Agora Energiewende.Google Scholar
  9. EC. 2011. Energy Roadmap 2050. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels: European Commission.Google Scholar
  10. Energiewirtschaftsgesetz vom 7. 2005 Juli. (BGBl. I S. 1970, 3621), das zuletzt durch Artikel 2 Absatz 6 desGesetzes vom 20. Juli 2017 (BGBl. I S. 2808, 2018 I 472) geändert worden ist. https://www.gesetze-im-internet.de/enwg_2005/EnWG.pdf
  11. EWI. 2012. Der Merit-Order-Effekt der erneuerbaren Energien – Analyse der kurzen und langen Frist. Energiewirtschaftliches Institut an der Universität KölnGoogle Scholar
  12. Johanna Cludius, Hauke Hermann, and Felix Chr. Matthes. 2013. The merit order effect of wind and photovoltaic electricity generation in Germany 2008-2012. CEEM Working Paper 3-2013. http://ceem.unsw.edu.au/sites/default/files/documents/CEEM%20%282013%29%20-%20MeritOrderEffect_GER_20082012_FINAL.pdf
  13. Krause, Florentin, Hartmut Bossel, and Karl-Friedrich Müller-Reissmann. 1980. In Energie-Wende: Wachstum und Wohlstand ohne Erdöl und Uran, ed. Öko-Institut Freiburg. Frankfurt am Main: S. Fischer.Google Scholar
  14. Küchler, Swantje, and Rupert Wronski. 2015. Was Strom wirklich kostet: Vergleich der staatlichen Förderungen und gesamtgesellschaftlichen Kosten von konventionellen und erneuerbaren Energien. Berlin, Germany: Forum Ökologisch-Soziale Marktwirtschaft e.V.Google Scholar
  15. Matthes, Felix, Ben Schlemmermeier, Carsten Diermann, Hauke Hermann, and Christian von Hammerstein. 2012. Fokussierte Kapazitätsmärkte. Ein neues Marktdesign für den Übergang zu einem neuen Energiesystem. Studie für die Umweltstiftung WWF Deutschland. Berlin: Öko-Institut e.V. - LBD-Beratungsgesellschaft mbH - RAUE LLP.Google Scholar
  16. Morris, Craig, and Martin Pehnt. 2016. Energy Transition: The German Energiewende. An initiative of the Heinrich Böll Foundation. First Released in November 2012, Revised in July 2016, Berlin.Google Scholar
  17. Neuhoff, Karsten, Jochen Diekmann, Clemens Gerbaulet, et al. 2013. Energiewende und Versorgungssicherheit: Deutschland braucht keinen Kapazitätsmarkt. DIW Wochenbericht 80 (48): 3–4.Google Scholar
  18. Nitsch, Joachim. 2016. Die Energiewende nach COP 21 – Aktuelle Szenarien der deutschen Energieversorgung. Kurzstudie für den Bundesverband Erneuerbare Energien e.V. Langversion, Stuttgart.Google Scholar
  19. Oei, Pao-Yu, Clemens Gerbaulet, Claudia Kemfert, Friedrich Kunz, Felix Reitz, and Christian von Hirschhausen. 2015. Effektive CO 2 -Minderung im Stromsektor: Klima-, Preis- und Beschäftigungseffekte des Klimabeitrags und alternativer Instrumente. 98. Politikberatung kompakt. Berlin: DIW.Google Scholar
  20. Oeko-Institut. 2016. Projected EEG Costs up to 2035: Impacts of Expanding Renewable Energy According to the Long-Term Targets of the Energiewende. Berlin: Study for Agora Energiewende.Google Scholar
  21. Sensfuß, F, and Ragwitz, M. 2007. Analyse des Preiseffektes der Stromerzeugung aus erneuerbaren Energien auf die Börsenpreise im deutschen Stromhandel – Analyse für das Jahr 2006/Gutachten des Frauenhofer Instituts für System- und Innovationsforschung für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. (Forschungsbericht)Google Scholar
  22. Sensfuß, F. 2011. Analysen zum Merit-Order Effekt erneuerbarer Energien Update für das Jahr 2010 Karlsruhe, 4. November 2011 Frauenhofer ISI. https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/Gutachten/analysen-merit-order-effekt.pdf?__blob=publicationFile&v=2
  23. Speth, V, and Klein, A. 2012. The impact of different wind and solar portfolios on spot market prices – a market model. Proceedings of 11th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Lisbon, Portugal, 13–15 November 2012.Google Scholar
  24. Speth, V, and Warzecha, J. 2012. The impact of wind and solar on peak and off-peak prices – evidence from two year price analysis. 12th IAEE European Energy Conference, Venice.Google Scholar
  25. SRU. 2011. Pathways towards a 100% Renewable Electricity System. Special report. Berlin: Sachverständigenrat für Umweltfragen.Google Scholar
  26. ———. 2017. Start Coal Phaseout Now. Berlin: German Advisory Council on the Environment.Google Scholar
  27. Toke, David. 2012. Nuclear Power: How Competitive Is It under Electricity Market Reform? Presentation given at the HEEDnet seminar presented at the HEEDnet Seminar, London, July 17.Google Scholar
  28. Traber, T. Kemfert, C. Diekmann, J. 2011. Strompreise: Künftig nur noch geringe Erhöhung durch erneuerbare Energien DIW Wochenbericht 6/2011. https://www.diw.de/sixcms/detail.php?id=diw_01.c.455270.de
  29. Hirschhausen, Christian von. 2017. Nuclear Power in the 21st Century – An Assessment (Part I). DIW discussion paper 1700, Berlin.Google Scholar
  30. Vereinigung der Bayerischen Wirtschaft e.V. Kosten des Ausbaus der erneuerbaren Energien. 2011. http://www.baypapier.com/fileadmin/user_upload/Downloads/Standpunkte/Studie_Kosten_Erneuerbare_Energien.pdf
  31. Wealer, Ben, Clemens Gerbaulet, Claudia Kemfert, and Christian von Hirschhausen. 2018. Cost Estimates and Economics of Nuclear Power Plant Newbuild: Literature Survey and Some Modelling Analysis. Presented at the 41 st IAEE International Conference, Groningen, NL, June 11.Google Scholar
  32. Weigt, Hannes. 2009. Germany’s wind energy: The potential for fossil capacity replacement and cost saving. Applied Energy 86: 1857–1863.  https://doi.org/10.1016/j.apenergy.2008.11.031.CrossRefGoogle Scholar
  33. Weigt, Hannes, and Florian Leuthold. 2010. Experience with renewable energy policy in Germany. In Harnessing Renewable Energy in Electric Power Systems: Theory, Practice, Policy, ed. Boaz Moselle, Jorge Padilla, and Richard Schmalensee. Washington, DC: RFF Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Junior Research Group “CoalExit”BerlinGermany
  3. 3.Aurora Energy ResearchBerlinGermany
  4. 4.TU BerlinBerlinGermany
  5. 5.DIW BerlinBerlinGermany

Personalised recommendations