Greenhouse Gas Emission Reductions and the Phasing-out of Coal in Germany

  • Pao-Yu OeiEmail author


The reduction of greenhouse gas (GHG) emissions, in particular CO2, is a major objective of the German energiewende. There has been broad consensus on this goal for many years now—in contrast to the continuing discussion over the proposed shutdown of Germany’s nuclear power plants. The German government’s Energy Concept 2010 already aimed at a 80–95% reduction of GHG by 2050 (compared to the base year 1990). In contrast to other sectors such as transport, agriculture, and heating, the electricity sector is capable of reducing CO2 emissions at relatively moderate cost through renewable energy sources. When excluding the option of carbon capture, transport and storage (CCTS) technologies, achieving ambitious climate objectives in Germany (and elsewhere) implies phasing out both hard coal and lignite. This chapter provides an overview of Germany’s GHG emission reduction targets in the electricity sector and the progress achieved so far. The electricity sector has the potential to lead the way in decarbonization, provided that the appropriate regulatory framework is in place. Due to insufficient price signals that can be expected to persist for the next decade, the European Emissions Trading System (EU-ETS) will not be able to achieve this objective on its own but will require support from appropriate national instruments. Section 4.2 gives an overview of Germany’s GHG emission reduction targets and their relation to European targets. Section 4.3 focuses on coal-fired electricity generation and its problematic role in the German energy sector. Section 4.4 discusses the influence of the EU-ETS as well as various additional national instruments, including a CO2 emissions performance standard (EPS), a CO2 floor price, and a phase-out law. In Section 4.5, we show that a medium-term coal phase-out is compatible with resource adequacy in Germany. The resulting structural change in the affected local basins can be handled through additional schemes, thus posing no major obstacle to the phase-out of coal. Section 4.6 concludes.


Greenhouse gas emissions Coal Lignite CCTS (carbon capture transport and storage) Emission trading system (ETS) Policy instruments 


  1. Abrell, Jan, and Sebastian Rausch. 2016. Cross-country electricity trade, renewable energy and European transmission iinfrastructure policy. Journal of Environmental Economics and Management 79 (September): 87–113.CrossRefGoogle Scholar
  2. Agora Energiewende. 2017. Eine Zukunft für die Lausitz: Elemente eines Strukturwandelkonzepts für das Lausitzer Braunkohlerevier. Berlin: Impulse.Google Scholar
  3. BMWi, and BMUB. 2010. Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. Berlin, Germany.Google Scholar
  4. Brancucci Martínez-Anido, Carlo. 2013. Electricity Without Borders – The Need for Cross-border Transmission Investment in Europe. Proefschrift/Dissertation, The Netherlands: Technische Universiteit Delft.Google Scholar
  5. EC. 2011. Energy roadmap 2050. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels, Belgium: European Commission.Google Scholar
  6. EC. 2014. Questions and answers on the proposed market stability reserve for the EU emissions trading system. Brussels: European Commission.Google Scholar
  7. ENTSO-E. 2014. Scenario Outlook & Adequacy Forecast 2014–2030. Brussels, Belgium: European Network of Transmission System Operators for Electricity.Google Scholar
  8. Gerbaulet, Clemens, Jonas Egerer, Pao-Yu Oei, Judith Paeper, and Christian von Hirschhausen. 2012. Die Zukunft der Braunkohle in Deutschland im Rahmen der Energiewende. DIW Berlin, Politikberatung kompakt 69. Berlin, Germany: Deutsches Institut für Wirtschaftsforschung (DIW).Google Scholar
  9. Göke, Leonard, Martin Kittel, Claudia Kemfert, Pao-Yu Oei, and Christian von Hirschhausen. 2018. Scenarios for the coal phase-out in Germany – A model-based analysis and implications for supply security. DIW Weekly Report 28/2018. Berlin, Germany: DIW Berlin, German Institute for Economic Research.Google Scholar
  10. Hake, Jürgen-Friedrich, Wolfgang Fischer, Sandra Venghaus, and Christoph Weckenbrock. 2015. The German Energiewende – history and status quo. Energy 92 (Part 3: Sustainable Development of Energy, Water and Environment Systems): 532–546.CrossRefGoogle Scholar
  11. Henning, Hans-Martin, and Andreas Palzer. 2012. 100% Erneuerbare Energien für Strom und Wärme in Deutschland. Freiburg, Germany: Fraunhofer-Institut für Solare Energiesysteme ISE.Google Scholar
  12. Herpich, Philipp, Hanna Brauers, and Pao-Yu Oei. 2018. An Historical Case Study on Previous Coal Transitions in Germany. IDDRI and Climate Strategies.Google Scholar
  13. IICCS. 2015. Islamic Declaration on Global Climate Change. Istanbul, Turkey: International Islamic Climate Change Symposium.Google Scholar
  14. IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
  15. Jacobson, Mark Z., Mark A. Delucchi, Zack A.F. Bauer, Savannah C. Goodman, William E. Chapman, Mary A. Cameron, Cedric Bozonnat, et al. 2017. 100% Clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1 (1): 108–121.CrossRefGoogle Scholar
  16. Klaus, T., C. Vollmer, K. Werner, H. Lehmann, and K. Müschen. 2010. Energieziel 2050: 100% Strom aus erneuerbaren Quellen. Dessau-Roßlau, Germany: Umweltbundesamt (UBA).Google Scholar
  17. Kungl, Gregor. 2015. Stewards or sticklers for change? Incumbent energy providers and the politics of the German energy transition. Energy Research & Social Science 8 (July): 13–23.CrossRefGoogle Scholar
  18. Leader of the G7. 2015. Leaders’ Declaration G7 Summit, June 7–8, 2015. Schloss Elmau, Germany.Google Scholar
  19. Lehr, Ulrike, Dietmar Edler, Marlene O’Sullivan, Frank Peter, and Peter Bickel. 2015. Beschäftigung durch erneuerbare Energien in Deutschland: Ausbau und Betrieb, heute und morgen. Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie. Berlin, Germany: GWS, DLR, Prognos, ZSW, DIW Berlin.Google Scholar
  20. Löffler, Konstantin, Karlo Hainsch, Thorsten Burandt, Pao-Yu Oei, Claudia Kemfert, and Christian von Hirschhausen. 2017. Designing a model for the global energy system—GENeSYS-MOD: an application of the Open-Source Energy Modeling System (OSeMOSYS). Energies 10 (10): 1468.CrossRefGoogle Scholar
  21. Mieth, Robert, Richard Weinhold, Clemens Gerbaulet, Christian von Hirschhausen, and Claudia Kemfert. 2015. Electricity grids and climate targets: new approaches to grid planning. DIW Economic Bulletin 5 (6): 75–80.Google Scholar
  22. Neuhoff, K., Acworth, W., Decheziepretre, A., Sartor, O., Sato, M., and Schopp, A. 2014. Energie- und Klimapolitik: Europa ist nicht allein (DIW Wochenbericht No. 6/2014). Berlin, Germany: DIW Berlin.Google Scholar
  23. New Climate Economy. 2014. Better Growth, Better Climate – Executive Summary. The Synthesis Report. Washington, DC, USA: The Global Commission on the Economy and Climate.Google Scholar
  24. Nitsch, Joachim. 2013. “Szenario 2013” – eine Weiterentwicklung des Leitszenarios 2011. Stuttgart, Germany: Deutsches Zentrum für Luft- und Raumfahrt (DLR).Google Scholar
  25. Oei, Pao-Yu. 2015. Decarbonizing the European Electricity Sector – Modeling and Policy Analysis for Electricity and CO 2 Infrastructure Networks. Berlin, Germany: Technische Universität Berlin.Google Scholar
  26. Oei, Pao-Yu, Claudia Kemfert, Felix Reitz, and Christian von Hirschhausen. 2014a. Braunkohleausstieg – Gestaltungsoptionen im Rahmen der Energiewende, Politikberatung kompakt. Vol. 84. Berlin, Germany: DIW.Google Scholar
  27. Oei, Pao-Yu, Felix Reitz, and Christian von Hirschhausen. 2014b. Risks of Vattenfall’s German Lignite Mining and Power Operations – Technical, Economic and Legal Considerations, Politikberatung kompakt. Vol. 87. Berlin, Germany: DIW Berlin — Deutsches Institut für Wirtschaftsforschung e. V.Google Scholar
  28. Oei, Pao-Yu, Clemens Gerbaulet, Claudia Kemfert, Friedrich Kunz, and Christian von Hirschhausen. 2015a. Auswirkungen von CO 2 -Grenzwerten für fossile Kraftwerke auf den Strommarkt und Klimaschutz, Politikberatung kompakt. Vol. 104. Berlin, Germany: DIW.Google Scholar
  29. Oei, Pao-Yu, Clemens Gerbaulet, Claudia Kemfert, Friedrich Kunz, Felix Reitz, and Christian von Hirschhausen. 2015b. Effektive CO 2 -Minderung im Stromsektor: Klima-, Preis- und Beschäftigungseffekte des Klimabeitrags und alternativer Instrumente, Politikberatung kompakt. Vol. 98. Berlin, Germany: DIW.Google Scholar
  30. Öko-Institut, and Fraunhofer ISI. 2014. Klimaschutzszenario 2050-1. Modellierungsrunde (Studie im Auftrag des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit). Berlin, Germany.Google Scholar
  31. Pope Francis. 2015. Laudato Si: On Care for Our Common Home – Encyclical Letter of Pope Francis. Rome, Italy: CreateSpace Independent Publishing Platform.Google Scholar
  32. Reitz, Felix, Clemens Gerbaulet, Claudia Kemfert, Casimir Lorenz, Pao-Yu Oei, and Christian von Hirschhausen. 2014. Szenarien einer nachhaltigen Kraftwerksentwicklung in Deutschland, Politikberatung kompakt. Vol. 90. Berlin, Germany: DIW.Google Scholar
  33. SRU. 2011. Pathways towards a 100% Renewable Electricity System. Special Report. Berlin, Germany: Sachverständigenrat für Umweltfragen.Google Scholar
  34. ———. 2015. The Future of Coal through 2040. Comment on Environmental Policy. Berlin, Germany: Sachverständigenrat für Umweltfragen.Google Scholar
  35. Statistik der Kohlenwirtschaft. 2018. Belegschaft im Steinkohlenbergbau der Bundesrepublik Deutschland. Essen, Bergheim. Retrieved July 17, 2018.
  36. Strunz, Sebastian, Erik Gawel, and Paul Lehmann. 2015. Towards a general ‘Europeanization’ of EU member states’ energy policies? Economics of Energy & Environmental Policy 4 (2): 143–159.CrossRefGoogle Scholar
  37. VDE. 2012. Erneuerbare Energie Braucht Flexible Kraftwerke – Szenarien Bis 2020. VDE-Studie. Frankfurt am Main, Germany: VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. - Energietechnische Gesellschaft im VDE (ETG).Google Scholar
  38. von Hirschhausen, Christian, Johannes Herold, and Pao-Yu Oei. 2012. How a ‘low carbon’ innovation can fail – tales from a ‘lost decade’ for Carbon Capture, Transport, and Sequestration (CCTS). Economics of Energy & Environmental Policy 1 (2): 115–123.Google Scholar
  39. Ziehm, C., Kemfert, C., Oei, P.-Y., Reitz, F., & Hirschhausen, C. von. 2014. Entwurf und Erläuterung für ein Gesetz zur Festsetzung nationaler CO2-Emissionsstandards für fossile Kraftwerke in Deutschland (Politikberatung kompakt No. 82). Berlin, Germany: DIW Berlin.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Junior Research Group “CoalExit”BerlinGermany
  2. 2.TU BerlinBerlinGermany
  3. 3.DIW BerlinBerlinGermany

Personalised recommendations