Point-of-Care Ultrasound Management and Monitoring in Critical Care

  • E. StortiEmail author
  • S. Rossi


Point-of-care clinical ultrasound (PoCUS) is ultrasonography brought to the patients in multiple settings and performed by the provider in real time; it is a multi-goal, dynamic, problem-based approach that allows the integration of images directly in the clinical evaluation, granting the recognition of specific patterns of disease.

PoCUS can successfully be used for the emergency and ICU evaluation of critical patients. It allows the real-time assessment of multiple districts parallel with the clinical ABCDE management of critical patients. PoCUS represents an added value helping in a better definition of airway problems, lung pathologies (breathing), hemodynamically unstable situations (circulation), neurological damages (disability), and the complete characterization of other lesions (exposure). PoCUS is also a valuable aid during invasive procedures providing a visual guidance and diminishing technical complications.

PoCUS, being a fast and replicable technique, can be used as a valid monitoring instrument to constantly keep track of the patient’s clinical status, anticipating potential detrimental evolutions, and can be considered a precious tool guiding the correct management of critical patients.


Point-of-care ultrasound FAST-ABCDE Ultrasound Lung ultrasound FAST E-FAST Ultrasound monitoring Ultrasound management 


  1. 1.
    Spevack DM, Spevack DM, Tunick PA, Kronzon I. Hand carried echocardiography in the critical care setting. Echocardiography. 2003;20(5):455–61.PubMedGoogle Scholar
  2. 2.
    Martin LD, Howell EE, Ziegelstein RC, Martire C, Whiting-O’Keefe QE, Shapiro EP, et al. Hand-carried ultrasound performed by hospitalists: does it improve the cardiac physical examination? Am J Med. 2009;122(1):35–41.PubMedGoogle Scholar
  3. 3.
    Vignon P, Chastagner C, François B, Martaillé J-F, Normand S, Bonnivard M, et al. Diagnostic ability of hand-held echocardiography in ventilated critically ill patients. Crit Care. 2003;7(5):R84–91.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gillman L, Kirkpatrick A. Portable bedside ultrasound: the visual stethoscope of the 21st century. Scand J Trauma Resusc Emerg Med. 2012;20:18.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wittenberg M. Will ultrasound scanners replace the stethoscope? BMJ. 2014;3463:1–3.Google Scholar
  6. 6.
    Scalea T, Rodriguez A, Chiu W. Focused Assessment with Sonography for Trauma (FAST): results from an international consensus conference. J Trauma. 1999;46(3):466–72.PubMedGoogle Scholar
  7. 7.
    Kirkpatrick W, Sirois M, Laupland K, Liu D, Rowan K, Ball C, et al. Hand-held thoracic sonography for detecting post-traumatic pneumothoraces: the extended focused assessment with sonography for trauma (EFAST). J Trauma. 2004;57(2):288–95.PubMedGoogle Scholar
  8. 8.
    Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care. 2014;4(1):1.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Neri L, Storti E, Lichtenstein D. Toward an ultrasound curriculum for critical care medicine. Crit Care Med. 2007;35(5 Suppl):S290–304.PubMedGoogle Scholar
  10. 10.
    Frerk C, Mitchell VS, McNarry AF, Mendonca C, Bhagrath R, Patel A, et al. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. Br J Anaesth. 2015;115(6):827–48. Oxford University Press.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kristensen MS, Teoh WH, Rudolph SS, Tvede MF, Hesselfeldt R, Børglum J, et al. Structured approach to ultrasound-guided identification of the cricothyroid membrane: a randomized comparison with the palpation method in the morbidly obese. Br J Anaesth. 2015;114(6):1003–4.PubMedGoogle Scholar
  12. 12.
    Dinsmore J, Heard AM, Green RJ. The use of ultrasound to guide time-critical cannula tracheotomy when anterior neck airway anatomy is unidentifiable. Eur J Anaesthesiol. 2011;28(7):506–10.PubMedGoogle Scholar
  13. 13.
    Das SK, Choupoo NS, Haldar R, Lahkar A. Transtracheal ultrasound for verification of endotracheal tube placement: a systematic review and meta-analysis. Can J Anesth. 2015;62(4):413–23.PubMedGoogle Scholar
  14. 14.
    Chou H-C, Tseng W-P, Wang C-H, Ma MH-M, Wang H-P, Huang P-C, et al. Tracheal rapid ultrasound exam (T.R.U.E.) for confirming endotracheal tube placement during emergency intubation. Resuscitation. 2011;82(10):1279–84.PubMedGoogle Scholar
  15. 15.
    Chou EH, Dickman E, Tsou P-Y, Tessaro M, Tsai Y-M, Ma MH-M, et al. Ultrasonography for confirmation of endotracheal tube placement: a systematic review and meta-analysis. Resuscitation. 2015;90:97–103.PubMedGoogle Scholar
  16. 16.
    Gottlieb M, Bailitz J. Can transtracheal ultrasonography be used to verify endotracheal tube placement? Ann Emerg Med. 2015;66(4):394–5.PubMedGoogle Scholar
  17. 17.
    Chun R, Kirkpatrick AW, Sirois M, Sargasyn AE, Melton S, Hamilton DR, et al. Where’s the tube? Evaluation of hand-held ultrasound in confirming endotracheal tube placement. Prehosp Disaster Med. 2004;19(4):366–9.PubMedGoogle Scholar
  18. 18.
    Lichtenstein DA, Lascols N, Prin S, Mezire G. The “lung pulse”: an early ultrasound sign of complete atelectasis. Intensive Care Med. 2003;29(12):2187–92.PubMedGoogle Scholar
  19. 19.
    Saporito A, Lo Piccolo A, Franceschini D, Tomasetti R, Anselmi L. Thoracic ultrasound confirmation of correct lung exclusion before one-lung ventilation during thoracic surgery. J Ultrasound. 2013;16(4):195–9.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ramsingh D, Frank E, Haughton R, Schilling J, Gimenez KM, Banh E, et al. Auscultation versus point-of-care ultrasound to determine endotracheal versus bronchial intubation. Anesthesiology. 2016;124(5):1012–20.PubMedGoogle Scholar
  21. 21.
    Lichtenstein D. General ultrasound in the critically ill. Springer; 2005. 199 p.Google Scholar
  22. 22.
    Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577–91.PubMedGoogle Scholar
  23. 23.
    Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J. 2016;37(27):2097–104.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Lichtenstein D, Mezière G. A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med. 1998;24(12):1331–4.PubMedGoogle Scholar
  25. 25.
    Dietrich CF, Mathis G, Blaivas M, Volpicelli G, Seibel A, Wastl D, et al. Lung B-line artefacts and their use. J Thorac Dis. 2016;8(6):1356–65.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Balik M, Plasil P, Waldauf P, Pazout J, Fric M, Otahal M, et al. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;32(2):318–21.PubMedGoogle Scholar
  27. 27.
    Cao W, Wang Y, Zhou N, Xu B. Efficacy of ultrasound-guided thoracentesis catheter drainage for pleural effusion. Oncol Lett. 2016;12(6):4445–8.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Moore C, Copel J. Point-of-care ultrasonography. N Engl J Med. 2011;364:749–58.PubMedGoogle Scholar
  29. 29.
    Alzahrani SA, Al-Salamah MA, Al-Madani WH, Elbarbary MA. Systematic review and meta-analysis for the use of ultrasound versus radiology in diagnosing of pneumonia. Crit Ultrasound J. 2017;9:6.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Lichtenstein D, Mezière G, Seitz J. The dynamic air bronchogram. Chest. 2009;135(6):1421–5. American College of Chest Physicians.PubMedGoogle Scholar
  31. 31.
    Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby J-J. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100(1):9–15.PubMedGoogle Scholar
  32. 32.
    Copetti R, Soldati G, Copetti P. Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound. 2008;6(1):16.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Algieri I, Mongodi S, Chiumello D, Mojoli F, Cressoni M, Via G, et al. CT scan and ultrasound comparative assessment of PEEP-induced lung aeration changes in ARDS. Crit Care. 2014;18(Suppl 1):285.Google Scholar
  34. 34.
    Kimura BJ. Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside. Heart. 2017;103(13):987–94.PubMedGoogle Scholar
  35. 35.
    Ceriani E, Cogliati C. Update on bedside ultrasound diagnosis of pericardial effusion. Intern Emerg Med. 2016;11(3):477–80.PubMedGoogle Scholar
  36. 36.
    Connolly JA, Dean AJ, Hoffmann B, Jarman RD. Emergency point of care ultrasound. 2017. 488 p.Google Scholar
  37. 37.
    Blaivas M. Ultrasound in the detection of venous thromboembolism. Crit Care Med. 2007;35(5 Suppl):S224–34.PubMedGoogle Scholar
  38. 38.
    Jang T, Crisp J, Lovato L. Compression ultrasonography of the lower extremity with portable vascular ultrasonography can accurately detect deep venous thrombosis in the emergency department. Ann Emerg Med. 2010;56(6):601–10.PubMedGoogle Scholar
  39. 39.
    Pomero F, Dentali F, Borretta V, Bonzini M, Melchio R, Douketis JD, et al. Accuracy of emergency physician–performed ultrasonography in the diagnosis of deep-vein thrombosis. Thromb Haemost. 2012;109(1):137–45.PubMedGoogle Scholar
  40. 40.
    Branney SW, Moore EE, Cantrill SV, Burch JM, Terry SJ. Ultrasound based key clinical pathway reduces the use of hospital resources for the evaluation of blunt abdominal trauma. J Trauma. 1997;42(6):1086–90.PubMedGoogle Scholar
  41. 41.
    Coley BD, Mutabagani KH, Martin LC, Zumberge N, Cooney DR, Caniano DA, et al. Focused abdominal sonography for trauma (FAST) in children with blunt abdominal trauma. J Trauma. 2000;48(5):902–6.PubMedGoogle Scholar
  42. 42.
    Holmes JF, Kelley KM, Wootton-Gorges SL, Utter GH, Abramson LP, Rose JS, et al. Effect of abdominal ultrasound on clinical care, outcomes, and resource use among children with blunt torso trauma. JAMA. 2017;317(22):2290. American Medical Association.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Natarajan B, Gupta PK, Cemaj S, Sorensen M, Hatzoudis GI, Forse RA. FAST scan: is it worth doing in hemodynamically stable blunt trauma patients? Surgery. 2010;148(4):695–701.PubMedGoogle Scholar
  44. 44.
    Raffiz M, Abdullah JM. Optic nerve sheath diameter measurement: a means of detecting raised ICP in adult traumatic and non-traumatic neurosurgical patients. Am J Emerg Med. 2017;35(1):150–3.PubMedGoogle Scholar
  45. 45.
    Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68.PubMedGoogle Scholar
  46. 46.
    Chiao L, Sharipov S, Sargsyan AE, Melton S, Hamilton DR, Mcfarlin K, et al. Ocular examination for trauma; clinical ultrasound aboard the International Space Station. J Trauma. 2005;58:885–9.PubMedGoogle Scholar
  47. 47.
    Blaivas M, Theodoro D, Sierzenski PR. A study of bedside ocular ultrasonography in the emergency department. Acad Emerg Med. 2002;9(8):791–9.PubMedGoogle Scholar
  48. 48.
    Weinberg ER, Tunik MG, Tsung JW. Accuracy of clinician-performed point-of-care ultrasound for the diagnosis of fractures in children and young adults. Injury. 2010;41(8):862–8.PubMedGoogle Scholar
  49. 49.
    Hoffmann B, Nürnberg D, Westergaard MC. Focus on abnormal air: diagnostic ultrasonography for the acute abdomen. Eur J Emerg Med. 2012;19(5):284–91.PubMedGoogle Scholar
  50. 50.
    Farcy DA, Chiu W, Marshall JP, Osborn TM. Critical care emergency medicine. 2nd ed. 688 p.Google Scholar
  51. 51.
    Krackov R, Rizzolo D. Real-time ultrasound-guided thoracentesis. J Am Acad Phys Assist. 2017;30(4):32–7.Google Scholar
  52. 52.
    Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. In: Brass P, editor. Cochrane Database of Systematic Reviews, vol. 1. Chichester: Wiley; 2015. p. CD006962.Google Scholar
  53. 53.
    Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327(7411):361–0.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Stolz LA, Stolz U, Howe C, Farrell IJ, Adhikari S. Ultrasound-guided peripheral venous access: a meta-analysis and systematic review. J Vasc Access. 2015;16(4):321–6.PubMedGoogle Scholar
  55. 55.
    Reusz G, Csomos A. The role of ultrasound guidance for vascular access. Curr Opin Anaesthesiol. 2015;28(6):1.Google Scholar
  56. 56.
    Egan G, Healy D, O’Neill H, Clarke-Moloney M, Grace PA, Walsh SR. Ultrasound guidance for difficult peripheral venous access: systematic review and meta-analysis. Emerg Med J. 2013;30(7):521–6.PubMedGoogle Scholar
  57. 57.
    Benkhadra M, Collignon M, Fournel I, Oeuvrard C, Rollin P, Perrin M, et al. Ultrasound guidance allows faster peripheral IV cannulation in children under 3 years of age with difficult venous access: a prospective randomized study. Pediatr Anesth. 2012;22(5):449–54.Google Scholar
  58. 58.
    Aouad-Maroun M, Raphael CK, Sayyid SK, Farah F, Akl EA. Ultrasound-guided arterial cannulation for paediatrics. In: Aouad-Maroun M, editor. Cochrane Database of Systematic Reviews, vol. 9. Chichester: Wiley; 2016. p. CD011364.Google Scholar
  59. 59.
    Shime N, Hosokawa K, MacLaren G. Ultrasound imaging reduces failure rates of percutaneous central venous catheterization in children. Pediatr Crit Care Med. 2015;16(8):718–25.PubMedGoogle Scholar
  60. 60.
    Tobin M. Post graduate course on ICU monitoring. ATS Conference, San Diego; 2006.Google Scholar
  61. 61.
    Via G, Storti E, Gulati G, Neri L, Mojoli F, Braschi A, et al. Lung ultrasound in the ICU: from diagnostic instrument to respiratory monitoring tool. Minerva Anestesiol. 2012;78(11):1282–96. Agosto.PubMedGoogle Scholar
  62. 62.
    Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby J-J. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit Care Med. 2010;38(1):84–92.PubMedGoogle Scholar
  63. 63.
    Grondin Beaudoin B, Chartrand-Lefebvre C, Girard M. Comparison of four scores for ultrasound assessment of pulmonary aeration. Am J Respir Crit Care Med. 2016;193:A5156.Google Scholar
  64. 64.
    Mongodi S, Via G, Bouhemad B, Storti E, Mojoli F, Branchi A. Usefulness of combined bedside lung ultrasound and echocardiography to assess weaning failure from mechanical ventilation: a suggestive case. Crit Care Med. 2013;41(8):e182–5.PubMedGoogle Scholar
  65. 65.
    Mongodi S, Via G, Bouhemad B, Storti E, Mojoli F, Braschi A. Usefulness of combined bedside lung ultrasound and echocardiography to assess weaning failure from mechanical ventilation: A suggestive case. Crit Care Med. 2013;41(8):e182–5.Google Scholar
  66. 66.
    Umbrello M, Formenti P, Longhi D, Galimberti A, Piva I, Pezzi A, et al. Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care. 2015;19(1):161. BioMed Central.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39(5):801–10.PubMedGoogle Scholar
  68. 68.
    Kim WY, Suh HJ, Hong S-B, Koh Y, Lim C-M. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011;39(12):2627–30.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Boyd JH, Sirounis D, Maizel J, Slama M. Echocardiography as a guide for fluid management. Crit Care. 2016;20(1):274. BioMed Central.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Barbier C, Loubires Y, Schmit C, Hayon J, Ricme J-L, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6.PubMedGoogle Scholar
  71. 71.
    Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis. Chest. 2008;133(1):252–63.PubMedGoogle Scholar
  72. 72.
    Jones A, Tayal V, Sullivan M, Kline J. Randomized, controlled trial of immediate versus delayed goal-directed ultrasound to identify the cause of nontraumatic hypotension in emergency department patients. Crit Care Med. 2004;32:1703–8.PubMedGoogle Scholar
  73. 73.
    Cinel I, Nanda R, Dellinger RP. Cardiac dysfunction in septic shock. Berlin, Heidelberg: Springer; 2008. p. 43–54.Google Scholar
  74. 74.
    Kotagal M, Quiroga E, Ruffatto BJ, Adedipe AA, Backlund BH, Nathan R, et al. Impact of point-of-care ultrasound training on surgical residents’ confidence. J Surg Educ. 2015;72(4):e82–7. NIH Public Access.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Killu K, Coba V, Mendez M, Reddy S, Adrzejewski T, Huang Y, et al. Model point-of-care ultrasound curriculum in an intensive care unit fellowship program and its impact on patient management. Crit Care Res Pract. 2014;2014:934796.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.General Intensive Care Unit and Intermediate Care UnitOspedale MaggioreLodiItaly
  2. 2.Pediatric Unit, Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly

Personalised recommendations