Technical Advances in Veterinary Diagnostic Microbiology

  • Dongyou Liu


Veterinary diagnostic microbiology is an applied biomedical discipline that deals with the identification, typing, virulence determination, and antimicrobial susceptibility testing of pathogenic microbes primarily affecting animals. Compared to its medical counterpart, veterinary diagnostic microbiology faces a greater challenge in achieving correct and timely diagnostic outcomes due to the existence of a more diverse range of hosts that are affected by a broader spectrum of pathogens. Although phenotypic approaches are useful for detection and diagnosis of animal microbial pathogens, their relatively low sensitivity/specificity, slow turnaround, and occasional variability have provided the impetus for the adoption of genotypic testing procedures, which demonstrate superior sensitivity, exquisite specificity, and extreme speed. Furthermore, improvement through miniature, multiplexing, and automation will further extend the utility and reduce the cost of these new generation technologies.


  1. 1.
    Liu D, editor. Manual of security sensitive microbes and toxins. Boca Raton: Taylor & Francis CRC Press; 2014.Google Scholar
  2. 2.
    Liu D, editor. Molecular detection of animal viral pathogens. Boca Raton: Taylor & Francis CRC Press; 2016.Google Scholar
  3. 3.
    Cai HY, Caswell JL, Prescott JF. Nonculture molecular techniques for diagnosis of bacterial disease in animals: a diagnostic laboratory perspective. Vet Pathol. 2014;51(2):341–50.CrossRefGoogle Scholar
  4. 4.
    Alsteens D, Dupres V, Andre G, Dufrêne YF. Frontiers in microbial nanoscopy. Nanomedicine (Lond). 2011;6:395–403.CrossRefGoogle Scholar
  5. 5.
    Bobard A, Mellouk N, Enninga J. Spotting the right location-imaging approaches to resolve the intracellular localization of invasive pathogens. Biochim Biophys Acta. 2011;1810:297–307.CrossRefGoogle Scholar
  6. 6.
    Simonet BM, Ríos A, Valcárcel M. Capillary electrophoresis separation of microorganisms. Methods Mol Biol. 2008;384:569–90.PubMedGoogle Scholar
  7. 7.
    Rodrigues NM, Bronzato GF, Santiago GS, et al. The matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identification versus biochemical tests: a study with enterobacteria from a dairy cattle environment. Braz J Microbiol. 2017;48:132–8.CrossRefGoogle Scholar
  8. 8.
    Prickett JR, Zimmerman JJ. The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim Health Res Rev. 2010;11:207–16.CrossRefGoogle Scholar
  9. 9.
    Saravanan P, Kumar S. Diagnostic and immunoprophylactic applications of synthetic peptides in veterinary microbiology. Microbiol Res. 2009;1:1e.CrossRefGoogle Scholar
  10. 10.
    Slomovic S, Pardee K, Collins JJ. Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci U S A. 2015;112:14429–35.CrossRefGoogle Scholar
  11. 11.
    Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 2017;48:11.CrossRefGoogle Scholar
  12. 12.
    Lallo MA, Vidoto Da Costa LF, Alvares-Saraiva AM, et al. Culture and propagation of microsporidia of veterinary interest. J Vet Med Sci. 2016;78:171–6.CrossRefGoogle Scholar
  13. 13.
    Andreu N, Zelmer A, Wiles S. Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol Rev. 2011;35:360–94.CrossRefGoogle Scholar
  14. 14.
    Luker KE, Luker GD. Bioluminescence imaging of reporter mice for studies of infection and in flammation. Antivir Res. 2010;86:93–100.CrossRefGoogle Scholar
  15. 15.
    Liu D. Preparation of Listeria monocytogenes specimens for molecular detection and identification. Int J Food Microbiol. 2008;122:229–42.CrossRefGoogle Scholar
  16. 16.
    Gibson W. Species-specific probes for the identification of the African tsetse-transmitted trypanosomes. Parasitology. 2009;136:1501–7.CrossRefGoogle Scholar
  17. 17.
    Li Y. Establishment and application of a visual DNA microarray for the detection of foodborne pathogens. Anal Sci. 2016;32:215–8.CrossRefGoogle Scholar
  18. 18.
    Liu D. Development of gene probes of Dichelobacter nodosus for differentiating strains causing virulent, intermediate or benign ovine footrot. Br Vet J. 1994;150:451–62.CrossRefGoogle Scholar
  19. 19.
    Liu D, Webber J. A polymerase chain reaction assay for improved determination of virulence of Dichelobacter nodosus, the specific causative pathogen for ovine footrot. Vet Microbiol. 1995;43:197–207.CrossRefGoogle Scholar
  20. 20.
    Liu D, Ainsworth AJ, Austin FW, Lawrence ML. Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J Med Microbiol. 2003;52:1065–70.CrossRefGoogle Scholar
  21. 21.
    Liu D, Ainsworth AJ, Austin FW, Lawrence ML. PCR detection of a putative N-acetylmuramidase gene from Listeria ivanovii facilitates its rapid identification. Vet Microbiol. 2004;101:83–9.CrossRefGoogle Scholar
  22. 22.
    Drozd M, Kassem II, Gebreyes W, Rajashekara G. A quantitative polymerase chain reaction assay for detection and quantification of Lawsonia intracellularis. J Vet Diagn Investig. 2010;22:265–9.CrossRefGoogle Scholar
  23. 23.
    Clothier KA, Jordan DM, Thompson CJ, Kinyon JM, Frana TS, Strait EL. Mycoplasma bovis real-time polymerase chain reaction assay validation and diagnostic performance. J Vet Diagn Investig. 2010;22:956–60.CrossRefGoogle Scholar
  24. 24.
    Gabig-Ciminska M. Developing nucleic acid-based electrical detection systems. Microb Cell Factories. 2006;5:9.CrossRefGoogle Scholar
  25. 25.
    Zeng D, Chen Z, Jiang Y, Xue F, Li B. Advances and challenges in viability detection of foodborne pathogens. Front Microbiol. 2016;7:1833.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Johansson A, Petersen JM. Genotyping of Francisella tularensis, the causative agent of tularemia. J AOAC Int. 2010;93:1930–43.PubMedGoogle Scholar
  27. 27.
    Liu D. Molecular approaches to the identification of pathogenic and nonpathogenic listeriae. Microbiol Insights. 2013;6:59–69.CrossRefGoogle Scholar
  28. 28.
    Liu D, Lawrence ML, Ainsworth AJ, Austin FW. Toward an improved laboratory definition of Listeria monocytogenes virulence. Int J Food Microbiol. 2007;118:101–15.CrossRefGoogle Scholar
  29. 29.
    Liu D, Lawrence ML, Austin FW, Ainsworth AJ. A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. J Microbiol Methods. 2007;71:33–40.CrossRefGoogle Scholar
  30. 30.
    Nhung NT, Cuong NV, Thwaites G, Carrique-Mas J. Antimicrobial usage and antimicrobial resistance in animal production in Southeast Asia: a review. Antibiotics (Basel). 2016;5(4):E37.CrossRefGoogle Scholar
  31. 31.
    Argudín MA, Deplano A, Meghraoui A, et al. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics (Basel). 2017;6(2):E12.CrossRefGoogle Scholar
  32. 32.
    Smout MJ, Kotze AC, McCarthy JS, Loukas A. A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis. 2010;4:e885.CrossRefGoogle Scholar
  33. 33.
    Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD. Molecular markers for resistance against infectious diseases of economic importance. Vet World. 2017;10:112–20.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dongyou Liu
    • 1
  1. 1.Royal College of Pathologists of Australasia Quality Assurance ProgramsNew South WalesAustralia

Personalised recommendations