Advertisement

On 4-Dimensional Hypercomplex Algebras in Adaptive Signal Processing

  • Francesca OrtolaniEmail author
  • Danilo Comminiello
  • Michele Scarpiniti
  • Aurelio Uncini
Chapter
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 102)

Abstract

The degree of diffusion of hypercomplex algebras in adaptive and non-adaptive filtering research topics is growing faster and faster. The debate today concerns the usefulness and the benefits of representing multidimensional systems by means of these complicated mathematical structures and the criterions of choice between one algebra or another. This paper proposes a simple comparison between two isodimensional algebras (quaternions and tessarines) and shows by simulations how different choices may determine the system performance. Some general information about both algebras is also supplied.

Keywords

Adaptive filters Quaternions Tessarines Hypercomplex Widely linear Least mean square 

References

  1. 1.
    Barthélemy, Q., Larue, A., Mars, J.I.: About qlms derivations. IEEE Trans. Signal Process. Letters 21(2), 240–243 (2014)CrossRefGoogle Scholar
  2. 2.
    Gerzon, M.A.: Ambisonics part two: studio techniques. Stud Sound 17, 24–26, 28–30 (1975)Google Scholar
  3. 3.
    Gerzon, M.A.: Ambisonics in multichannel broadcastingand video. J. Audio Eng. Soc. 33(11), 859–871 (1985)Google Scholar
  4. 4.
    Jahanchahi, C., Took, C., Mandic, D.: A class of quaternion valued affine projection algorithms. Signal Process. 93, 1712–1723 (2013)CrossRefGoogle Scholar
  5. 5.
    Jahanehahi, C., Took, C.C., Mandic, D.P.: The widely linear quaternion recursive least squares filter. In: Proceedings of the 2nd International Workshop Cognitive Information Processing (CIP 2010)Google Scholar
  6. 6.
    Katunin, A.: Three-dimensional octonion wavelet transform. J. Appl. Math. Comput. Mech. 13(1), 33–38 (2014)CrossRefGoogle Scholar
  7. 7.
    Kraft, E.: A quaternion-based unscented kalman filter for orientation tracking. In: Proceedings of the 6th International Conference Information Fusion, pp. 47 – 54 (ISIF 2003)Google Scholar
  8. 8.
    Li, X., Adalı, T.: Complex-valued linear and widely linear filtering using mse and gaussian entropy. IEEE Trans. Sig. Proc. 60(11), 5672–5684 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mandic, D.P., Goh, V.S.L.: Complex valued nonlinear adaptive filters: noncircularity, widely linear and neural models. Wiley (2009)Google Scholar
  10. 10.
    Neeser, F.D., Massey, J.L.: Proper complex random processes with applications to information theory. IEEE Trans. Inf. Theory 39(4), 1293–1302 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ortolani, F., Comminiello, D., Scarpiniti, M., Uncini, A.: Frequency domain quaternion adaptive filters: algorithms and convergence performance. Sig. Process. 136, 69–80 (2017)CrossRefGoogle Scholar
  12. 12.
    Ortolani, F., Comminiello, D., Uncini, A.: The widely linear block quaternion least mean square algorithm for fast computation in 3d audio systems. In: Proceedings of the 26th International Workshop on Machine Learning for Signal Processing (Sep MLSP, 2016)Google Scholar
  13. 13.
    Ortolani, F., Uncini, A.: A new approach to acoustic beamforming from virtual microphones based on Ambisonics for adaptive noise cancelling. In: IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO) (2016)Google Scholar
  14. 14.
    Picinbono, B.: On circularity. IEEE Trans. Sig. Proc. 42(11), 3473–3482 (1994)CrossRefGoogle Scholar
  15. 15.
    Picinbono, B., Chevalier, P.: Widely linear estimation with complex data. IEEE Trans. Sig. Proc. 43(8), 2030–2033 (1995)CrossRefGoogle Scholar
  16. 16.
    Rumsey, F.: Spatial Audio. Focal Press (2001)Google Scholar
  17. 17.
    Said, S., Bihan, N.L., Sangwine, S.J.: Fast complexified quaternion fourier transform. IEEE Trans. Signal Process. 56(4), 1522–1531 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shoemake, K.: Animating rotation with quaternion calculus. ACM SIGGRAPH Course NotesGoogle Scholar
  19. 19.
    Took, C.C., Mandic, D.P.: The quaternion lms algorithm for adaptive filtering of hypercomplex processes. IEEE Trans. Signal Process. 57(4), 1316–1327 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Took, C., Mandic, D.P.: A quaternion widely linear adaptive filter. IEEE Trans. Signal Process. 58(8), 4427–4431 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Took, C., Mandic, D.P.: Augmented second-order statistics of quaternion random signals. Signal Process. 91(2), 214–224 (2011)CrossRefGoogle Scholar
  22. 22.
    Vakhania, N.N.: Random vectors with values in quaternion Hilbert spaces. Theor. Probab. Appl. 43(1), 18–40 (1998)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Francesca Ortolani
    • 1
    Email author
  • Danilo Comminiello
    • 1
  • Michele Scarpiniti
    • 1
  • Aurelio Uncini
    • 1
  1. 1.Dpt. of Information Engineering, Electronics and Telecommunications (DIET)“Sapienza” University of RomeRomeItaly

Personalised recommendations