Advertisement

Inelastic Behavior of Tungsten-Carbide in Pressure-Shear Impact Shock Experiments Beyond 20 GPa

  • Z. LovingerEmail author
  • C. Kettenbeil
  • M. Mello
  • G. Ravichandran
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Pressure-shear plate impact (PSPI) tests commonly use Tungsten-Carbide (WC) as anvil plates, sandwiching the tested material. The common use of WC in these tests is due to its high impedance and high strength, allowing to reach high pressures, with an elastic response, enabling a straightforward analysis of the tested material. Recent modifications of a powder gun facility at Caltech have enabled pressure-shear plate impact experiments (PSPI) to reach higher velocities with corresponding higher pressures and strain rates. Entering this regime, the inelastic behavior of WC has to be taken into account to extract the response of the tested material. In this work we examine the inelastic behavior of WC in the pressure-shear set-up via numerical simulations and PSPI experiments. The 3D numerical simulations enabled to study effects of friction, slip and tilt on the measured signals and so their sensitivity to the material strength and failure behavior. A material model was calibrated in relation to the experimental results.

Keywords

Pressure-shear Tungsten-carbide Dynamic strength High pressure High strain rates 

References

  1. 1.
    Mandel, K., Radajewski, M., Krüger, L.: Strain-rate dependence of the compressive strength of WC–Co hard metals. Mat. Sci. Eng. A. 612, 115–122 (2014)CrossRefGoogle Scholar
  2. 2.
    Frutschy, K.J., Clifton, R.J.: High-temperature pressure-shear plate impact experiments using pure tungsten carbide impactors. Exp. Mech. 38, 116–125 (1998)CrossRefGoogle Scholar
  3. 3.
    Dandekar, D.P., Grady, D.: Shock equation of state and dynamic strength of tungsten carbide. AIP Conf. Proc. 620, 783 (2002)CrossRefGoogle Scholar
  4. 4.
    Litasov, K.D., Shatskiy, A., Fei, Y., Suzuki, A., Ohtani, E.: Pressure-volume-temperature equation of state of tungsten carbide to 32 GPa and 1673 K. J. Appl. Phys. 108, 053513 (2010)CrossRefGoogle Scholar
  5. 5.
    Getting, I.C., Chen, G., Brown, J.A.: The strength and rheology of commercial tungsten carbide Cermets used in high-pressure apparatus. In: Liebermann, R.C., Sondergeld, C.H. (eds.) Experimental Techniques in Mineral and Rock Physics. Pageoph Topical Volumes. Birkhäuser, Basel (1993)Google Scholar
  6. 6.
    Amulele, G., Manghnani, M.H., Marriappan, S., Hong, X.: Compression behavior of WC and WC-6%Co up to 50 GPa determined by synchrotron x-ray diffraction and ultrasonic techniques. J. Appl. Phys. 103, 113522 (2008)CrossRefGoogle Scholar
  7. 7.
    Grady, D.: Shock wave compression in brittle solids. Mech. Mat. 29(3), 181–203 (1998)CrossRefGoogle Scholar
  8. 8.
    Millet, J.C.F., Bourne, N.K., Dandekar, D.P.: Lateral stress measurements and shear strength in shock loaded tungsten carbide. J. Appl. Phys. 96(7), 3727–3732 (2004)CrossRefGoogle Scholar
  9. 9.
    Clifton, R.J., Jiao, T.: Pressure and strain-rate sensitivity of an elastomer:(1) pressure-shear plate impact experiments; (2) constitutive modeling, in elastomeric polymers with high rate sensitivity. In: Barsoum, R.G. (ed.) Elastomeric Polymers with High Rate Sensitivity, pp. 17–64. Elsevier, Oxford (2015)Google Scholar
  10. 10.
    Jiao, T., Kettenbeil, C., Ravichandran, G., Clifton, R.J.: Experimental investigation of the shearing resistance of soda-lime glass at pressures of 9 GPa and strain rates of 106s−1. In: Chau, R., Germann, T., Lane, M. (eds.) Shock Compression of Condensed Matter 2017. American Institute of Physics, Melville (2018)Google Scholar
  11. 11.
    Kettenbeil, C., Mello, M., Jiao, T., Clifton, R.J., Ravichandran, G.: Pressure-shear plate impact experiment on soda-lime glass at a pressure of 30GPa and strain rate of 4·107 s−1. In: Chau, R., Germann, T., Lane, M. (eds.) Shock Compression of Condensed Matter 2017. American Institute of Physics, Melville (2018)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • Z. Lovinger
    • 1
    Email author
  • C. Kettenbeil
    • 1
  • M. Mello
    • 1
  • G. Ravichandran
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations