Dynamic Fragmentation of MAX Phase Ti3SiC2 from Edge-On Impact Experiments

  • P. Forquin
  • N. Savino
  • L. LambersonEmail author
  • M. Barsoum
  • M. Morais
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


MAX phases are an emerging class of nanolayered ternary carbides or nitrides with hexagonal crystallographic structures where only basal slip is available for plastic deformation under ambient conditions. At the same time, these materials also exhibit potentially advantageous energy-absorbing micromechanisms of kink banding and delamination, stemming from nonlinear buckling on the atomistic plane; thus presenting a unique material for next-generation protection and shielding applications. In the present study two EOI (edge-on impact) testing configurations have been used with MAX phase Ti3SiC2 tiles (60 × 30 × 4 mm), in order to investigate the damage modes generated under highly inertial conditions. The samples are made using the hot isostatic pressing technique, producing nominally isotropic needle-like grain structures with an average size of approximately 10 μm. Small cylindrical projectiles are launched at impact speeds from 190 to 250 m/s onto the edge of the MAX tiles, and a fragmentation process is developed in less than 20 μs, captured with an ultra-high-speed camera at 2 million frames per second. The two configurations differ depending on the use or not of a dynamic confinement system. In the configuration without dynamic confinement, comminution and erosion occurred significantly around the impact site, and only a few dominant cracks radiated from the damage zone; a few with characteristic branching. Conversely, fragmentation composed of radial cracks is observed when the dynamic confinement prevents excessive damage near the impact side. The resulting fragments are analyzed under the scanning electron microscope (SEM), and these results are discussed within the context of the DFH (Denoual-Forquin-Hild) anisotropic damage model, comparing cracking density and velocity of the damage front.


MAX phase Edge-on-impact Kink bands Dynamic fracture Damage model 


  1. 1.
    Barsoum, M.W.: MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Wiley-VCH Verlag GmbH & Co., Weinheim, Germany (2013)CrossRefGoogle Scholar
  2. 2.
    Senf, H., Strassburger, E., Rothenhäusler, H.: Stress wave induced damage and fracture in impacted glasses. J. Phys. IV France. 04, C8-741–C8-746 (1994). CrossRefGoogle Scholar
  3. 3.
    Strassburger, E.: Visualization of impact damage in ceramics using the edge-on impact technique. Int. J. Appl. Ceram. Technol. 1(3), 235–242 (2004)CrossRefGoogle Scholar
  4. 4.
    Riou, P., Denoual, C., Cottenot, C.E.: Visualization of the damage evolution in impacted silicon carbide ceramics. Int. J. Impact Eng. 21(4), 225–235 (1998)CrossRefGoogle Scholar
  5. 5.
    Denoual, C., Hild, F.: A Damage Model for the Dynamic Fragmentation of Brittle Solids. Comput. Methods Appl. Mech. Eng. 183, 247–258 (2000)CrossRefGoogle Scholar
  6. 6.
    Forquin, P., Tran, L., Louvigné, P.-F., Rota, L., Hild, F.: Effect of aluminum reinforcement on the dynamic fragmentation of SiC ceramics. Int. J. Impact Eng. 28, 1061–1076 (2003)CrossRefGoogle Scholar
  7. 7.
    Zinszner, J.-L., Forquin, P., Rossiquet, G.: Experimental and numerical analysis of the dynamic fragmentation in a SiC ceramic under impact. Int. J. Impact Eng. 76, 9–19 (2015)CrossRefGoogle Scholar
  8. 8.
    Forquin, P.: Endommagement et fissuration de matériaux fragiles sous impact balistique, rôle de la microstructure. PhD Thesis, Ecole Normale Supérieure, Cachan, (2003)Google Scholar
  9. 9.
    Forquin, P., Hild, F.: Dynamic fragmentation of an ultra-high strength concrete during edge-on impact tests. ASCE J. Eng. Mech. 134(4), 302–315 (2008)CrossRefGoogle Scholar
  10. 10.
    Grange, S., Forquin, P., Mencacci, S., Hild, F.: On the dynamic fragmentation of two limestones using edge-on impact tests. Int. J. Impact Eng. 35, 977–991 (2008)CrossRefGoogle Scholar
  11. 11.
    Erzar, B., Forquin, P.: Experiments and mesoscopic modelling of dynamic testing of concrete. Mech. Mater. 43, 505–527 (2011)CrossRefGoogle Scholar
  12. 12.
    Saadati, M., Forquin, P., Weddfelt, K., Larsson, P.L., Hild, F.: Granite rock fragmentation at percussive drilling – experimental and numerical investigation. Int. J. Numer. Anal Methods Geomech. 38(8), 828–843 (2014)CrossRefGoogle Scholar
  13. 13.
    Forquin, P., Hild, F.: A probabilistic damage model of the dynamic fragmentation process in brittle materials. In: Advances in Applied Mech. Giessen & Are Feds, vol. 44, pp. 1–72. Academic Press, San Diego, CA (2010)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • P. Forquin
    • 1
  • N. Savino
    • 2
  • L. Lamberson
    • 3
    • 4
    Email author
  • M. Barsoum
    • 4
  • M. Morais
    • 5
  1. 1.SR3 Laboratory, Université Grenoble AlpesGrenobleFrance
  2. 2.Mechanical Engineering and MechanicsDrexel UniversityPhiladelphiaUSA
  3. 3.Department of Mechanical Engineering and MechanicsDrexel UniversityPhiladelphiaUSA
  4. 4.Materials Science and EngineeringDrexel UniversityPhiladelphiaUSA
  5. 5.SIMaP Laboratory, Materials ScienceUniversité Grenoble AlpesGrenobleFrance

Personalised recommendations