Shock Compression Response of Model Polymer/Metal Composites

  • David BoberEmail author
  • Yoshi Toyoda
  • Brian Maddox
  • Eric Herbold
  • Yogendra Gupta
  • Mukul Kumar
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Heterogeneous materials do not respond mechanically to an impulse in the manner of homogeneous metals and alloys. Wave propagation in a microstructure with chemically distinct identities, that are only in incidental contact with each other, is a complex process and not well understood. Here we report on a series of plate-impact experiments on a polymer-metal composite, where the volume fraction of the metallic phase was systematically varied from 0% to 40%, while other parameters like the sample thickness were kept constant. The velocity histories at the sample/window interfaces were measured to examine the continuum response corresponding to the internal materials processes. The unfilled polymer demonstrated a steady shock wave response; whereas the wave profiles obtained from mixture samples showed structured waves that depended on the volume fraction of the fill. The shock wave profiles were quantified using parameters strongly correlated to the material composition. The likely physical basis of these correlations is discussed.


Shock response Heterogeneous material Particulate composite Plate impact Stress wave 



This work was partly performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The work at Washington State University was supported in part by DOE/NNSA (DE-NA0002007).


  1. 1.
    Ling, Y., Haselbacher, A., Balachandar, S., Najjar, F.M., Stewart, D.S.: Shock interaction with a deformable particle: direct numerical simulation and point-particle modeling. J. Appl. Phys. 113, 013504 (2013)CrossRefGoogle Scholar
  2. 2.
    Nesterenko, V.: Dynamics of Heterogeneous Materials. Springer, New York (2013)Google Scholar
  3. 3.
    Barker, L.M., Hollenbach, R.E.: Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43, 4669–4675 (1972)CrossRefGoogle Scholar
  4. 4.
    Setchell, R.E., Anderson, M.U., Montgomery, S.T.: Compositional effects on the shock-compression response of alumina-filled epoxy. J. Appl. Phys. 101, 083527 (2007)CrossRefGoogle Scholar
  5. 5.
    Rauls, M.B., Ravichandran, G.: Shock wave structure in particulate composites. Procedia Eng. 103, 515–521 (2015)CrossRefGoogle Scholar
  6. 6.
    Munson, D.E., Boade, R.R., Schuler, K.W.: Stress-wave propagation in Al2O3-epoxy mixtures. J. Appl. Phys. 49, 4797–4807 (1978)CrossRefGoogle Scholar
  7. 7.
    Setchell, R.E., Anderson, M.U.: Shock-compression response of an alumina-filled epoxy. J. Appl. Phys. 97, 083518 (2005)CrossRefGoogle Scholar
  8. 8.
    Vogler, T.J., Alexander, C.S., Wise, J.L., Montgomery, S.T.: Dynamic behavior of tungsten carbide and alumina filled epoxy composites. J. Appl. Phys. 107, 043520 (2010)CrossRefGoogle Scholar
  9. 9.
    Hao, T., Riman, R.E.: Calculation of interparticle spacing in colloidal systems. J. Colloid Interface Sci. 297, 374–377 (2006)CrossRefGoogle Scholar
  10. 10.
    Parmar, M., Haselbacher, A., Balachandar, S.: Modeling of the unsteady force for shock-particle interaction. Shock Waves. 19, 317–329 (2009)CrossRefGoogle Scholar
  11. 11.
    Herbold, E.B., Nesterenko, V.F., Benson, D.J., Cai, J., Vecchio, K.S., Jiang, F., et al.: Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials. J. Appl. Phys. 104, 103903 (2008)CrossRefGoogle Scholar
  12. 12.
    Anderson, M.U., Cox, D.E., Montgomery, S.T., Setchell, R.E.: Initial temperature effects on the shock compression and release properties of different alumina‐filled epoxy compositions. In: Elert, M., Furnish, M.D., Chau, R., Holmes, N., Nguyen, J. (eds.) Shock Compression of Condensed Matter–2007, Pts 1 and 2, pp. 683–686. American Institute of Physics, Melville (2009)Google Scholar
  13. 13.
    Mooney, M.: The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 6, 162–170 (1951)CrossRefGoogle Scholar
  14. 14.
    Powell, M.J.: Site percolation in randomly packed spheres. Phys. Rev. B. 20, 4194–4198 (1979)CrossRefGoogle Scholar
  15. 15.
    Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids. 57, 706–727 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jordan, J.L., Herbold, E.B., Sutherland, G., Fraser, A., Borg, J., Richards, D.W.: Shock equation of state of multi-constituent epoxy-metal particulate composites. J. Appl. Phys. 109, 013531 (2011)CrossRefGoogle Scholar
  17. 17.
    Millett, J.C.F., Bourne, N.K., Deas, D.: The equation of state of two alumina-filled epoxy resins. J. Phys. D. Appl. Phys. 38, 930–934 (2005)CrossRefGoogle Scholar
  18. 18.
    Daraio, C., Nesterenko, V.F.: Strongly nonlinear wave dynamics in a chain of polymer coated beads. Phys. Rev. E. 73, 026612 (2006)CrossRefGoogle Scholar
  19. 19.
    Veazie, D., Jordan, J.L., Spowart, J.E., White, B.W., Thadhani, N.N.: Model for elastic Modulus of multi-constituent particulate composites. Exp. Mech. 53, 1213–1222 (2013)CrossRefGoogle Scholar
  20. 20.
    White, B.W., Thadhani, N.N., Jordan, J.L., Spowart, J.E.: The effect of particle reinforcement on the dynamic deformation of epoxy-matrix composites. In: Elert, M.L., Buttler, W.T., Furnish, M.D., Anderson, W.W., Proud, W.G. (eds.) Shock Compression of Condensed Matter – 2009, Pts 1 and 2, pp. 1245–1248. American Institute of Physics, Melville (2009)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • David Bober
    • 1
    Email author
  • Yoshi Toyoda
    • 2
  • Brian Maddox
    • 1
  • Eric Herbold
    • 1
  • Yogendra Gupta
    • 2
  • Mukul Kumar
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Washington State UniversityPullmanUSA

Personalised recommendations