Advertisement

The Role of Texture on the Strain-Rate Sensitivity of Mg and Mg Alloy AZ31B

  • Nathan Briggs
  • Moriah Bischann
  • Owen T. KingstedtEmail author
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

In this study, the role of texture on the quasi-static and dynamic response of pure magnesium and magnesium alloy AZ31B is investigated. Texture is imparted through thermo-mechanical processes of hot-rolling or equal channel angular extrusion. Constant strain-rate, both dynamic and quasi-static, and strain-rate jump experiments, dynamic-quasi-static, quasi-static-dynamic and dynamic-dynamic, are used to examine plastic flow anisotropy and strain hardening response. Observations of the macroscopic material behavior, specifically the stress-trajectory, are supported by electron back-scatter diffraction analysis to gain insights of texture evolution and predominant deformation processes taking place during deformation increments.

Keywords

Magnesium AZ31B Dynamic response Strain-rate sensitivity Strain hardening 

References

  1. 1.
    Furukawa, M., Horita, Z., Nemoto, M., Langdon, T.G.: Review: processing of metals by equal-channel angular pressing. J. Mater. Sci. 36(12), 2835–2843 (2001)CrossRefGoogle Scholar
  2. 2.
    Tucker, M.T., Horstemeyer, M.F., Gullett, P.M., El Kadiri, H., Whittington, W.R.: Anisotropic effects on the strain rate dependence of a wrought magnesium alloy. Scr. Mater. 60(3), 182–185 (2009)CrossRefGoogle Scholar
  3. 3.
    Christian, J.W., Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39(1–2), 1–157 (1995)CrossRefGoogle Scholar
  4. 4.
    Knezevic, M., Levinson, A., Harris, R., Mishra, R.K., Doherty, R.D., Kalidindi, S.R.: Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater. 58(19), 6230–6242 (2010)CrossRefGoogle Scholar
  5. 5.
    Mukai, T., Yamanoi, M., Watanabe, H., Higashi, K.: Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 45(1), 89–94 (2001)CrossRefGoogle Scholar
  6. 6.
    Suwas, S., Gottstein, G., Kumar, R.: Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium. Mater. Sci. Eng. A. 471(1–2), 1–14 (2007)CrossRefGoogle Scholar
  7. 7.
    Agnew, S.R., Mehrotra, P., Lillo, T.M., Stoica, G.M., Liaw, P.K.: Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: experiments and simulations. Acta Mater. 53(11), 3135–3146 (2005)CrossRefGoogle Scholar
  8. 8.
    Xia, K., Wang, J.T., Wu, X., Chen, G., Gurvan, M.: Equal channel angular pressing of magnesium alloy AZ31. Mater. Sci. Eng. A. 410, 324–327 (2005)CrossRefGoogle Scholar
  9. 9.
    Kim, W.J., Hong, S.I., Kim, Y.S., Min, S.H., Jeong, H.T., Lee, J.D.: Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater. 51(11), 3293–3307 (2003)CrossRefGoogle Scholar
  10. 10.
    Su, C.W., Chua, B.W., Lu, L., Lai, M.O.: Properties of severe plastically deformed Mg alloys. Mater. Sci. Eng. A. 402(1–2), 163–169 (2005)CrossRefGoogle Scholar
  11. 11.
    Su, C.W., Lu, L., Lai, M.O.: Mechanical behaviour and texture of annealed AZ31 Mg alloy deformed by ECAP. Mater. Sci. Technol. 23(3), 290–296 (2007)CrossRefGoogle Scholar
  12. 12.
    Janecek, M., Popov, M., Krieger, M.G., Hellmig, R.J., Estrin, Y.: Mechanical properties and microstructure of a Mg alloy AZ31 prepared by equal-channel angular pressing. Mater. Sci. Eng. A. 462(1–2), 116–120 (2007)CrossRefGoogle Scholar
  13. 13.
    Agnew, S.R., Horton, J.A., Lillo, T.M., Brown, D.W.: Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scr. Mater. 50(3), 377–381 (2004)CrossRefGoogle Scholar
  14. 14.
    Kim, H.K., Kim, W.J.: Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Mater. Sci. Eng. A. 385(1–2), 300–308 (2004)CrossRefGoogle Scholar
  15. 15.
    Kim, W.J., Jeong, H.T.: Grain-size strengthening in equal-channel-angular-pressing processed AZ31 Mg alloys with a constant texture. Mater. Trans. 46(2), 251–258 (2005)CrossRefGoogle Scholar
  16. 16.
    Gama, B.A., Lopatnikov, S.L., Gillespie, J.J.W.: Hopkinson bar experimental technique: a critical review. Appl. Mech. Rev. 57(4), 223–250 (2004)CrossRefGoogle Scholar
  17. 17.
    Nicolazo, C., Leroy, M.: Dynamic behaviour of alpha-iron under decremental step pulses. Mech. Mater. 34(4), 231–224 (2002)CrossRefGoogle Scholar
  18. 18.
    Rittel, D., Ravichandran, G., Venkert, A.: The mechanical response of pure iron at high strain rates under dominant shear. Mater. Sci. Eng. A. 432(1–2), 191–201 (2006)CrossRefGoogle Scholar
  19. 19.
    Leroy, M., Raad, MK., Nkule, L., Cheron, R.: Influence of instantaneous dynamic decremental incremental strain rate tests on the mechanical-behavior of metals – Application to high-purity polycrystalline. Institute of Physics Conference Series, vol. 70, pp. 31–38. (1984)Google Scholar
  20. 20.
    Wonsiewicz, B.C., Backofen, W.A.: Plasticity of magnesium crystals. Trans. Metall. Soc. AIME. 239(9), 1422 (1967)Google Scholar
  21. 21.
    Lou, X.Y., Li, M., Boger, R.K., Agnew, S.R., Wagoner, R.H.: Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 23(1), 44–86 (2007)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • Nathan Briggs
    • 1
  • Moriah Bischann
    • 2
  • Owen T. Kingstedt
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Applied Physics and Materials ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations