Advertisement

Improved Richtmyer-Meshkov Instability Experiments for Very-High-Rate Strength and Application to Tantalum

  • Michael B. PrimeEmail author
  • William T. Buttler
  • Saryu J. Fensin
  • David R. Jones
  • Ruben Manzanares
  • Daniel T. Martinez
  • John I. Martinez
  • Derek W. Schmidt
  • Carl P. Trujillo
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Recently, Richtmyer-Meshkov instabilities (RMI) have been used for studying metal strength at strain rates up to at least 10^7/s. RMI experiments involve shocking a metal interface with geometrical perturbations that invert, grow, and possibly arrest subsequent to the shock. In experiments one measures the growth and arrest velocities to study the specimen’s flow (deviatoric) strength. In this paper, we describe experiments on tantalum at three shock pressure from 20 to 34 GPa, with six different perturbation sizes at each pressure, making this the most comprehensive set of RMI experiments on any material. In addition, these experiments were fielded using impact loading, as compared to high explosive loading in previous experiments, allowing for more precise modeling and more extensive interpretation of the data. Preliminary results are presented.

Keywords

Dynamic strength Richtmyer-Meshkov instability High-rate strength Shock physics Hydrocode 

Notes

Acknowledgements

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

References

  1. 1.
    Piriz, A.R., Cela, J.J.L., Tahir, N.A., Hoffmann, D.H.H.: Richtmyer-Meshkov instability in elastic-plastic media. Phys. Rev. E. 78(5), 056401 (2008)CrossRefGoogle Scholar
  2. 2.
    Piriz, A.R., Cela, J.J.L., Tahir, N.A.: Richtmyer–Meshkov instability as a tool for evaluating material strength under extreme conditions. Nucl Instrum Meth A. 606(1), 139–141 (2009)CrossRefGoogle Scholar
  3. 3.
    Dimonte, G., Terrones, G., Cherne, F.J., Germann, T.C., Dupont, V., Kadau, K., Buttler, W.T., Oro, D.M., Morris, C., Preston, D.L.: Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities. Phys. Rev. Lett. 107(26), 264502 (2011)CrossRefGoogle Scholar
  4. 4.
    Buttler, W.T., Oró, D.M., Preston, D.L., Mikaelian, K.O., Cherne, F.J., Hixson, R.S., Mariam, F.G., Morris, C., Stone, J.B., Terrones, G., Tupa, D.: Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 60–84 (2012)CrossRefGoogle Scholar
  5. 5.
    López Ortega, A., Lombardini, M., Pullin, D.I., Meiron, D.I.: Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws. Phys. Rev. E. 89(3), 033018 (2014)CrossRefGoogle Scholar
  6. 6.
    Mikaelian, K.O.: Shock-induced interface instability in viscous fluids and metals. Phys. Rev. E. 87(3), 031003 (2013)CrossRefGoogle Scholar
  7. 7.
    Plohr, J.N., Plohr, B.J.: Linearized analysis of Richtmyer-Meshkov flow for elastic materials. J. Fluid Mech. 537, 55–89 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Prime, M.B., Vaughan, D.E., Preston, D.L., Buttler, W.T., Chen, S.R., Oró, D.M., Pack, C.: Using growth and arrest of Richtmyer-Meshkov instabilities and Lagrangian simulations to study high-rate material strength. J. Phys. Conf. Ser. 500(11), 112051 (2014)CrossRefGoogle Scholar
  9. 9.
    Opie, S., Gautam, S., Fortin, E., Lynch, J., Peralta, P., Loomis, E.: Behaviour of rippled shocks from ablatively-driven Richtmyer-Meshkov in metals accounting for strength. J. Phys. Conf. Ser. 717(1), 012075 (2016)CrossRefGoogle Scholar
  10. 10.
    John, K.K.: Strength of Tantalum at High Pressures through Richtmyer-Meshkov Laser Compression Experiments and Simulations. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA (2014)Google Scholar
  11. 11.
    Buttler, W.T., GrayIII, G.T., Fensin, S.J., Grover, M., Prime, M.B., Stevens, G.D., Stone, J.B., Turley, W.D.: Yield strength of Cu and a CuPb alloy (1% Pb). AIP Conf. Proc. 1793(1), 110005 (2017).  https://doi.org/10.1063/1.4971668 CrossRefGoogle Scholar
  12. 12.
    Sternberger, Z., Maddox, B.R., Opachich, Y.P., Wehrenberg, C.E., Kraus, R.G., Remington, B.A., Randall, G.C., Farrell, M., Ravichandran, G.: A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum. AIP Conf. Proc. 1793(1), 110006 (2017).  https://doi.org/10.1063/1.4971669 CrossRefGoogle Scholar
  13. 13.
    Prime, M.B., Buttler, W.T., Buechler, M.A., Denissen, N.A., Kenamond, M.A., Mariam, F.G., Martinez, J.I., Oró, D.M., Schmidt, D.W., Stone, J.B., Tupa, D., Vogan-McNeil, W.: Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov instabilities. J. Dyn. Behav. Mater. 3(2), 189–202 (2017).  https://doi.org/10.1007/s40870-017-0103-9 CrossRefGoogle Scholar
  14. 14.
    Prime, M.B.: Strain rate sensitivity of Richtmyer-Meshkov instability experiments for metal strength. In: Kimberley, J., Lamberson, L., Mates, S. (eds.) Dynamic Behavior of Materials, Volume 1: Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics, pp. 13–16. Springer International Publishing, Cham, Switzerland (2018).  https://doi.org/10.1007/978-3-319-62956-8_3 CrossRefGoogle Scholar
  15. 15.
    Opie, S.: Effects of Phase Transformations and Dynamic Material Strength on Hydrodynamic Instability Evolution in Metals. Ph.D. thesis Arizona State University, Tempe. Arizona, USA (2017)Google Scholar
  16. 16.
    Sternberger, Z., Opachich, Y., Wehrenberg, C., Kraus, R., Remington, B., Alexander, N., Randall, G., Farrell, M., Ravichandran, G.: Investigation of hydrodynamic instability growth in copper. Int. J. Mech. Sci. (2017). in press,  https://doi.org/10.1016/j.ijmecsci.2017.08.051 CrossRefGoogle Scholar
  17. 17.
    Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720-722, 1–136 (2017).  https://doi.org/10.1016/j.physrep.2017.07.005 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1–160 (2017).  https://doi.org/10.1016/j.physrep.2017.07.008 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Prime, M.B., Buttler, W.T., Buechler, M.A., Denissen, N.A., Kenamond, M.A., Mariam, F.G., Martinez, J.I., Oró, D.M., Schmidt, D.W., Stone, J.B., Tupa, D., Vogan-McNeil, W.: Estimation of metal strength at very high rates using free-surface Richtmyer-Meshkov instabilities. J. Dyn. Behavior Mater. 3(2), 189–202 (2017).  https://doi.org/10.1007/s40870-017-0103-9 CrossRefGoogle Scholar
  20. 20.
    Vachhani, S.J., Trujillo, C., Mara, N., Livescu, V., Bronkhorst, C., Gray, G.T., Cerreta, E.: Local mechanical property evolution during high strain-rate deformation of tantalum. J. Dyn. Behav. Mater. 2(4), 511–520 (2016).  https://doi.org/10.1007/s40870-016-0085-z CrossRefGoogle Scholar
  21. 21.
    Buchheit, T.E., Cerreta, E.K., Diebler, L., Chen, S.-R., Michael, J.R.: Characterization of Tri-lab Tantalum (Ta) Plate. Sandia National Laboratories Report SAND2014-17645 (2014)Google Scholar
  22. 22.
    Lim, H., Bong, H.J., Chen, S.-R., Rodgers, T.M., Battaile, C.C., Lane, J.M.D.: Developing anisotropic yield models of polycrystalline tantalum using crystal plasticity finite element simulations. Int. J Solids Struct. 730(11), 50–56 (2018)CrossRefGoogle Scholar
  23. 23.
    Preston, D.L., Tonks, D.L., Wallace, D.C.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93(1), 211–220 (2003)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • Michael B. Prime
    • 1
    Email author
  • William T. Buttler
    • 1
  • Saryu J. Fensin
    • 1
  • David R. Jones
    • 1
  • Ruben Manzanares
    • 1
  • Daniel T. Martinez
    • 1
  • John I. Martinez
    • 1
  • Derek W. Schmidt
    • 1
  • Carl P. Trujillo
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations