Examining Material Response Using X-Ray Phase Contrast Imaging

  • B. J. JensenEmail author
  • B. Branch
  • F. J. Cherne
  • A. Mandal
  • D. S. Montgomery
  • A. J. Iverson
  • C. Carlson
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Propagation based X-ray phase contrast imaging (PCI) offers unique opportunities for ultrafast, high-resolution measurements to examine dynamic materials response at extreme conditions. Within the past decade, efforts on the IMPULSE system at the Advanced Photon Source included the development of a novel Multi-frame X-ray PCI (MPCI) system that was used to obtain the first shock-movies to examine material deformation with micron spatial resolution on nanosecond timescale. The MPCI system has been systematically developed over the years to improve optical efficiencies, spatial resolution, obtain more images per experiment, and to develop a dual-imaging, dual-zoom feature useful for many applications. With the MPCI system, X-ray PCI has been successfully used to study a wide range of phenomena including jet-formation in metals, crack nucleation and propagation, response of additively manufactured materials, and detonator dynamics to name a few. In this paper, a brief overview of the MPCI system development is provided along with its application to study shock propagation in materials.


PCI phase contrast imaging x-ray imaging shock compression matter at extremes 



This work was performed by Los Alamos National Laboratory (LANL) at Los Alamos and at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS). All x-ray phase contrast images shown here were obtained using LANL’s multi-frame x-ray phase contrast imaging system (MPCI) developed on the IMPULSE capability at APS. Chuck Owens, Joe Rivera, and John Wright (LANL) are thanked for sample assembly, experiment preparation and execution. Nick Sinclair and Adam Schuman (DCS/WSU) are thanked for their technical support at the Sector 35 beamline setting up the X-ray beam. The authors gratefully acknowledge the financial support provided by Science Campaigns, Joint Munitions Program (JMP), and National Security Technologies (NSTec) Shock Wave Physics Related Diagnostic (SWRD) program. LANL is operated by Los Alamos National Security, LLC for the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396. DCS is supported by the Department of Energy (DOE), National Nuclear Security Administration, under Award Number DE-NA0002442 and operated by Washington State University (WSU). This research used resources of APS, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.


  1. 1.
    Asay, J.R., Fowles, G.R., Duvall, D.E., Miles, M.H., Tinder, R.F.: Effects of point defects on elastic precursor decay in LiF. J. Appl. Phys. 43, 2132 (1972)CrossRefGoogle Scholar
  2. 2.
    Dolan, D.H., Johnson, J.N., Gupta, Y.M.: Nanonsecond freezing of water under multiple shock wave compression: continuum modeling and wave profile measurements. J. Chem. Phys. 123, 064702 (2005)CrossRefGoogle Scholar
  3. 3.
    Jensen, B.J., Gray, G.T., Hixson, R.S.: Direct measurement of the α-ε transition stress and kinetics for shocked iron. J. Appl. Phys. 105, 013502 (2009)CrossRefGoogle Scholar
  4. 4.
    Jensen, B.J., Cherne, F.J.: Dynamic compression of cerium in the low-pressure γ-α region of the phase diagram. J. Appl. Phys. 112, 013515 (2012)CrossRefGoogle Scholar
  5. 5.
    Jensen, B.J., Gupta, Y.M.: Time-resolved x-ray diffraction experiments to examine the elastic-plastic transition in shocked magnesium-doped LiF. J. Appl. Phys. 104, 013510 (2008)CrossRefGoogle Scholar
  6. 6.
    Jensen, B.J., Gupta, Y.M.: X-ray diffraction measurements in shock compressed magnesium doped LiF crystals. J. Appl. Phys. 100(5), 053512 (2006)CrossRefGoogle Scholar
  7. 7.
    Kalantar, D.H., Belak, J.F., Collins, G.W., Colvin, J.D., Davies, H.M., et al.: Direct observation of the $\alpha-\epsilon$ transition in shock-compressed iron via nanosecond X-ray diffraction. Phys. Rev. Lett. 95, 075502 (2005)CrossRefGoogle Scholar
  8. 8.
    Jensen, B.J., Lou, S.N., Hooks, D.E., Fezzaa, K., Ramos, K.J., Yeager, J.D., Kwiatkowski, K., Shimada, T., Dattelbaum, D.M.: Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation. AIP Adv. 2(1), 012170–012176 (2012)CrossRefGoogle Scholar
  9. 9.
    Luo, S.N., Jensen, B.J., Hooks, D.E., Fezzaa, K., Ramos, K.J., Yeager, J.D., Kwiatkowski, K., Shimada, T.: Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the advanced photon source. Rev. Sci. Instrum. 83(7), 073903 (2012)CrossRefGoogle Scholar
  10. 10.
    Jensen, B.J., Owens, C.T., Ramos, K.J., Yeager, J.D., Saavedra, R.A., Iverson, A.J., Luo, S.N., Fezzaa, K.: Hooks DE impact system for ultrafast synchrotron experiments. Rev. Sci. Instrum. 84(1), 013904–013905 (2013)CrossRefGoogle Scholar
  11. 11.
    Gupta, Y.M., Turneaure, S.J., Perkins, K., Zimmerman, K., Arganbright, N., Shen, G., Chow, P.: Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility. Rev. Sci. Instrum. 83(12), 123905 (2012)CrossRefGoogle Scholar
  12. 12.
    Montgomery, D.S., Nobile, A., Walsh, P.J.: Characterization of National Ignitition Facility cryogenic beryllium capsules using x-ray phase contrast imaging. Rev. Sci. Instrum. 75, 3986–3988 (2004)CrossRefGoogle Scholar
  13. 13.
    Yeager, J.D., Luo, S.N., Jensen, B.J., Fezzaa, K., Montgomery, D.S., Hooks, D.E.: High-speed synchrotron X-ray phase contrast imaging for analysis of low-Z composite microstructure. Compos. A: Appl. Sci. Manuf. 43(6), 885–892 (2013). CrossRefGoogle Scholar
  14. 14.
    Ramos, K.J., Jensen, B.J., Yeager, J.D., Bolme, C.A., Iverson, A.J., Carlson, C.A., Fezzaa, K.: Investigation of dynamic material cracking with in situ synchrotron-based measurements. In: Song, B., Casem, D., Kimberley, J. (eds.) Dynamic Behavior of Materials, vol. 1, pp. 413–420. Springer International Publishing, Dordrecht (2014). ISBN 978–3–319-00770-0Google Scholar
  15. 15.
    Jensen, B.J., Cherne, F.J., Ramos, K.J., Iverson, A.J., Carlson, C.A., Yeager, J.D., Fezzaa, K., Dimonte, G., Hooks, D.E.: Multiphase material strength determined through shock generated Richtmyer-Meshkov instabilities. J. Appl. Phys. 118, 195903 (2015)CrossRefGoogle Scholar
  16. 16.
    Brown, E.N., Ramos, K.J., Dattelbaum, D.M., Jensen, B.J., Gray III, G.T., Matterson, B.M., Trujillo, C.P., Martinez, D.T., Pierce, T.H., Iverson, A.J., Carlson, C.A., Fezzaa, K., Furmanski, J.: In situ and postmortem measures of damage in polymers at high strain-rate. Conference Proceedings of the Society for Experimental Mechanics Series. 65(1), 53–59 (2015)CrossRefGoogle Scholar
  17. 17.
    Brown, E.N., Furmanski, J., Ramos, K.J., Dattelbaum, D.M., Jensen, B.J., Iverson, A.J., Carlson, C.A., Fezzaa, K., Trujillo, C.P., Martinez, D.T., Gray III, G.T., Patterson, B.M.: High-density polyethylene damage at extreme tensile conditions. J. Phys. Conf. Ser. 500, 112011 (2014)CrossRefGoogle Scholar
  18. 18.
    Hawreliak, J., Lind, J., Maddox, B., Barham, M., Messner, M., Barton, N., Jensen, B.J., Kumar, M.: Dynamic behavior of engineered lattice materials. Nature Scientific Reports. 6, 28094 (2016)CrossRefGoogle Scholar
  19. 19.
    Branch, B., Ionita, A., Clements, B., Montgomery, D., Jensen, B.J., Patterson, B., Mueller, A., Dattelbaum, D.M.: Controlling shockwave dynamics using architecture in periodic porous materials. J. Appl. Phys. 121, 135102 (2017)CrossRefGoogle Scholar
  20. 20.
    Willey, T.M., Champley, K., Hodgin, R., Lauderbach, L., Bagge-Hansen, M., May, C., Sanchez, N.J., Jensen, B.J., Iverson, A.J., Van Buuren, T.: X-ray Imaging and 3D Reconstruction of In-Flight Exploding Foil Initiator Flyers. J. Appl. Phys. 119, 235901 (2016)CrossRefGoogle Scholar
  21. 21.
    Sanchez, N.J., Neal, W.E., Jensen, B.J., Iverson, A.J., Carlson, C.A.: Dynamic Exploding Foil Initiator Imaging at the Advanced Photon Source. AIP Conf. Proc. 1979(160023), (2018)Google Scholar
  22. 22.
    Neal, W.E., Sanchez, N., Jensen, B.J., Gibson, J., Martinez, M., et al.: The effect of surface heterogeneity in exploding metal foils. AIP Conf. Proc. 1979(180007), (2018)Google Scholar
  23. 23.
    Mandal, A., Jensen, B.J., Aslam, T.D., Iverson, A.J.: Dynamic Compaction of Nickel Powder Examined by X-ray phase contrast imaging. AIP Conf. Proc. 1979(110010), (2018)Google Scholar
  24. 24.
    Ramos, K.J., Jensen, B.J., Hooks, D.E., Fezzaa, K., Yeager, J.D., Iverson, A.J., Carlson, C.A., Cherne, F.J.: In situ investigation of the dynamic response of energetic materials using IMPULSE at the advanced photon source. J. Phys. Conf. Ser. 500, 142028 (2014)CrossRefGoogle Scholar
  25. 25.
    Jensen, B.J., Hooks, D.E., Fezzaa, K., Ramos, K.J., Yeager, J.D., Iverson, A.J., Carlson, C.A., Cherne, F.J., Kwiatkowski, K.: Dynamic experiments using IMPULSE at the advanced photon source. J. Phys. Conf. Ser. 500, 042001 (2014)CrossRefGoogle Scholar
  26. 26.
    Jensen, B.J., Montgomery, D.S., Iverson, A.J., Carlson, C.A., Clements, B., Short, M., Fredenburg, D.A.: X-ray phase contrast imaging of granular systems. LA-UR-17-27104 Los Alamos Laboratory Report (2017)Google Scholar
  27. 27.
    Branch, B., Jensen, B.J.: Dynamic X-ray diffraction to study the shock-induced a-e phase transition in iron. AIP Conf. Proc. 1979(040001), (2018)Google Scholar
  28. 28.
    Jensen, B.J., Holtkamp, D.B., Rigg, P.A., Dolan, D.H.: Accuracy limits and window corrections for Photon Doppler velocimetry. J. Appl. Phys. 101, 013523 (2007)CrossRefGoogle Scholar
  29. 29.
    LASL SHOCK HUGONIOT DATA (University of California Press, Berkley and Los Angeles, CA, 1980)Google Scholar
  30. 30.
    Carter WJ, Marsh SP. Hugoniot Equation of State of Polymers. LA-12006-MS Los Alamos National Laboratory (1995)Google Scholar
  31. 31.
    Millett, J.C.F., Bourne, N.K.: Shock and release of polycarbonate under one-dimensional strain. J. Mater. Sci. 41, 1683–1690 (2006)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • B. J. Jensen
    • 1
    Email author
  • B. Branch
    • 1
  • F. J. Cherne
    • 1
  • A. Mandal
    • 1
  • D. S. Montgomery
    • 1
  • A. J. Iverson
    • 2
  • C. Carlson
    • 2
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.National Security TechnologiesLos AlamosUSA

Personalised recommendations