Skip to main content

Thermodynamic Modeling of the Solid State Carbothermic Reduction of Chromite Ore

  • Conference paper
  • First Online:
Extraction 2018

Abstract

Chromium has a wide range of applications, including as an alloy addition in various steels and also as a corrosion resistance coating. Carbothermal reduction of chromite ore (FeCr2O4) in a submerged arc furnace is an important industrial process for extracting chromium, but the energy consumption is excessive. It is suggested that one area for future research is the low temperature carbothermic solid state reduction of chromite to produce an intermediate product, which can subsequently be upgraded to ferrochromium . In this regard, a thermodynamic model has been developed to investigate this process and the effects of temperature , carbon additions and ore composition on the recovery of chromium and the grade of the ferrochromium , have been studied. Further development of the model may allow it to be applied to the simulation of other processes for the recovery of chromium from chromite ores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Independent Environmental Technical Evaluation Group (IETEG), Chromium (VI) Handbook (2005) CRC Press, Boca Raton, Florida

    Google Scholar 

  2. Beukes JP, Du Preez SP, Van Zyl PG, Paktunc D, Fabritius T, Päätalo M, Cramer M (2017) Review of Cr (VI) environmental practices in the chromite mining and smelting industry–relevance to development of the Ring of Fire, Canada. J Clean Product 165:874–889

    Article  CAS  Google Scholar 

  3. U.S. Geological Survey. Mineral Commodity Summaries (2017) U.S. Geological Survey, United States of America

    Google Scholar 

  4. International Stainless Steel Forum, Stainless Steel in Figures (2015) In: International stainless steel forum

    Google Scholar 

  5. Tripathy SK, Banerjee PK, Suresh N (2015) Magnetic separation studies on ferruginous chromite fine to enhance Cr: Fe ratio. Int J Miner Metall Mater 22(3):217–224

    Article  CAS  Google Scholar 

  6. Chakraborty D, Ranganathan S, Sinha SN (2010) Carbothermic reduction of chromite ore under different flow rates of inert gas. Metall Mater Trans B 41B:437–444

    Google Scholar 

  7. Vignes A (2013) Extractive metallurgy 3: processing operations and routes. ISTE Ltd and John Wiley & Sons Inc, New Jersey

    Google Scholar 

  8. Daavittila JBJ (2013) “High carbon ferrochrome technology”, in handbook of ferroalloys—theory and technology. Butterworth-Heinemann, Kidlington, Oxford, pp 317–363

    Google Scholar 

  9. Schulte RF, Taylor RD, Piatak NM, Seal II RR (2010) Stratiform chromite deposit model. U.S. Geological Survey, Reston, Virginia, Open-File Report 2010 1232

    Google Scholar 

  10. Gujar AR, Ambre NV, Sridhar DI, Mislankar PG, Loveson VJ (2010) Placer chromite along South Maharastra, Central West Coast of India. Curr Sci 99(4):491–499

    Google Scholar 

  11. Takano C, Zambrano AP, Nogueira AEA, Mourao MB, Iguchi Y (2007) Chromites reduction reaction mechanisms in carbon-chromites composite agglomerates at 1773 K. ISIJ Int 47(11):1585–1589

    Article  CAS  Google Scholar 

  12. Apaydin F, Atasoy A, Yildiz K (2011) Effect of mechanical activation on carbothermal reduction of chromite with graphite. Can Metall Q 50(2):113–118

    Article  CAS  Google Scholar 

  13. Lyakishev NP, Gasik MI (1998) Metallurgy of Chromium. Allerton Press, New York

    Google Scholar 

  14. Weber P, Eric PH (2006) The reduction of chromite in the presence of silica flux. Miner Eng 19(3):318–324

    Article  CAS  Google Scholar 

  15. Katayama H, Tokuda M (1979) The reduction behavior of synthetic chromites by carbon. Tetsu- Hagane 65(3):331–340

    Article  CAS  Google Scholar 

  16. Hu X, Teng L, Wang H, Ökvist LS, Yang Q, Björkman B, Seetharaman S (2016) Carbothermic reduction of synthetic chromite with/without the addition of iron powder. ISIJ Int 56(12):2147–2155

    Article  CAS  Google Scholar 

  17. Wang Y, Wang L, Yu J, Chou KC (2014) Kinetics of carbothermic reduction of synthetic chromite. J Min Metall Sect B Metall 50(1B):15–21

    Article  Google Scholar 

  18. Vignes A (2012) Extractive metallurgy 2: metallurgical reaction processes. ISTE Ltd and John Wiley & Sons Inc, New Jersey

    Google Scholar 

  19. Khedr MH (2000) Isothermal reduction kinetics of Fe2O3 mixed with 1-10% Cr2O3 at 1173-1473 K. ISIJ Int 40(4):309–314

    Article  CAS  Google Scholar 

  20. Qayyum MA, Reeve DA (1976) Reduction of chromites to sponge ferrochromium in methane-hydrogen mixtures. Can Metall Q 15(3):193–200

    Article  CAS  Google Scholar 

  21. Anacleto NM, Ostrovski O (2004) Solid-state reduction of chromium oxide by methane-containing gas. Metall Mater Trans B 35B:609–615

    Article  CAS  Google Scholar 

  22. Ebrahimi-Kahrizsangi R, Zadeh HM, Nemati V (2010) Synthesis of chromium carbide by reduction of chromium oxide with methane. Int J Refract Met Hard Mater 28(3):412–415

    Article  CAS  Google Scholar 

  23. Arvanitidis I, Artin C, Cleason P, Swartling D (1996) Study of the kinetics of reduction of iron chromate by hydrogen. Scand J Metall,. 25(4): 141–147

    Google Scholar 

  24. Chakraborty D, Ranganathan S, Sinha SN (2005) Investigations on the carbothermic reduction of chromite ores. Metall Mater Trans B 36(4):437–444

    Article  Google Scholar 

  25. Zhang Y, Liu Y, Wei W (2013) Carbothermal reduction process of the Fe-Cr-O system. Int J Miner Metall Mater 20(10):931–940

    Article  CAS  Google Scholar 

  26. Hino M, Nagasaka T, Higuchi K, Ban-Ya S (1998) Thermodynamic estimation on the reduction behavior of iron-chromium ore with carbon. Metall Mater Trans B 29(2):351–360

    Article  Google Scholar 

  27. Hino M, Higuchi KI, Nagasaka T, Ban-Ya S (1994) Phase equilibria and activities of the constituents in FeO· Cr2O3–MgO· Cr2O3 spinel solid solution saturated with Cr2O3. ISIJ Int 34(9):739–745

    Article  CAS  Google Scholar 

  28. Hino M, Higuchi K, Nagasaka T, Ban-Ya S (1995) Phase equilibria and thermodynamics of FeO.Cr2O3-MgO.Cr2O3-MgO.Al2O3 spinel structure solid solution saturated with (Cr, Al)2O3. ISIJ Int 35(7):851–858

    Article  CAS  Google Scholar 

  29. Roine A (2006) HSC chemistry 6.0 - User’s guide. Outokumpu Research Oy, Poir, Finland

    Google Scholar 

  30. Petric A, Jacob KT (1982) Thermodynamic properties of Fe3O4-FeV2O4 and Fe3O4-FeCr2O4 spinel solid solutions. J Am Ceram Soc 65(2):117–123

    Article  CAS  Google Scholar 

  31. Katayama I, Iseda A (2002) Thermodynamic study of spinel-type solid solutions of the Fe3O4-MgFe2O4 coexisting with Fe2O3 by emf method. Scand J Metall 31:374–378

    Article  CAS  Google Scholar 

  32. Chirasha J (2011) Ferrochrome smelting and smelting capacity investment in Zimbabwe. Southern African Pyrometallurgy, 77–81, Johannesburg, 6–9 March 2011

    Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Resources and Engineering Research Council of Canada (NSERC) for their support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Marzoughi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marzoughi, O., Pickles, C.A. (2018). Thermodynamic Modeling of the Solid State Carbothermic Reduction of Chromite Ore. In: Davis, B., et al. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_74

Download citation

Publish with us

Policies and ethics