Advertisement

Extraction 2018 pp 1709-1720 | Cite as

Activation and Deactivation Effects of Lead on Gold Cyanidation

  • Rina KimEmail author
  • Ahmad Ghahreman
  • Michel Epiney
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The addition of lead to a gold leaching reactor can effectively accelerate or retard the gold cyanidation reaction. This study explored the effect of lead on the gold dissolution kinetics using cyclic voltammetry (CV) experiments. It was illustrated that the gold leaching kinetics in the cyanide solution enhanced with the addition of lead salt in the low overpotential region (–0.35 V vs. Ag/AgCl). The similar behavior was observed in the presence of ore containing 0.25% galena. In contrast, the gold oxidation kinetics retarded at –0.35 V (vs. Ag/AgCl) in the presence of silicate and lead-bearing mineral under certain conditions. Likewise, the lead addition was not functional for the high sulfur ore. This was attributed to the oxidation of the sulfides to the elemental sulfur, which subsequently formed a passivating layer on the gold surface. The results were evidently affirmed by the electrochemical tests and X-ray photoelectron spectroscopy (XPS) analysis.

Keywords

Gold Cyanidation Lead XPS Electrochemistry 

Notes

Acknowledgements

The authors would like to thank MITACS (Ref. IT07117) and Air Liquide for the financial support of this study.

References

  1. 1.
    Elsner L (1846) Beobachtungen über das Verhalten regulinischer Metalle in einer wässrigen Lösung von Cyankalium. Journal für Praktische Chemie 37(1):441–446CrossRefGoogle Scholar
  2. 2.
    Cathro KJ, Koch DFA (1964) The anodic dissolution of gold in cyanide solutions. J Electrochem Soc 111(12):1416–1420CrossRefGoogle Scholar
  3. 3.
    Nicol MJ (1980) The anodic behavior of gold: part II–oxidation in alkaline solutions. Gold Bull 13(3):105–111CrossRefGoogle Scholar
  4. 4.
    Guan Y, Han KN (1994) An electrochemical study on the dissolution of gold and copper from gold/copper alloys. Metall Mater Trans B 25B:817–827CrossRefGoogle Scholar
  5. 5.
    Guzman L, Segarra M, Chimenos JM, Cabot PL, Espiell F (1999) Electrochemistry of conventional gold cyanidation. Electrochim Acta 44:2625–2632CrossRefGoogle Scholar
  6. 6.
    Tan H, Feng D, van Deventer JSJ, Lukey GC (2006) An electrochemical study of gold cyanidation in the presence of carbon coatings. Hydrometallurgy 84:14–27CrossRefGoogle Scholar
  7. 7.
    Mac Arthur DM (1972) A study of gold reduction and oxidation in aqueous solutions. J Electrochem Soc 119(6):672–677CrossRefGoogle Scholar
  8. 8.
    Kirk DW, Foulkes FR (1980) Anodic dissolution of gold in aqueous alkaline cyanide solutions at low overpotentials. J Electrochem Soc 127(9):1993–1997CrossRefGoogle Scholar
  9. 9.
    Kirk DW, Foulkes FR, Graydon WF (1978) A study of anodic dissolution of gold in aqueous alkaline cyanide. J Electrochem Soc 125(9):1436–1443CrossRefGoogle Scholar
  10. 10.
    Kirk DW, Foulkes FR, Graydon WF (1980) Gold passivation in aqueous alkaline cyanide. J Electrochem Soc 127(9):1962–1969CrossRefGoogle Scholar
  11. 11.
    Jeffrey MI, Ritchie IM (2000) The leaching of gold in cyanide solutions in the presence of impurities: I. The effect of lead. J Electrochem Soc 147(9):3257–3262CrossRefGoogle Scholar
  12. 12.
    Jeffrey MI, Ritchie IM (2000) The leaching of gold in cyanide solutions in the presence of impurities: II. The effect of silver. J Electrochem Soc 147(9):3272–3276CrossRefGoogle Scholar
  13. 13.
    Jeffrey MI, Ritchie IM (2001) The leaching and electrochemistry of gold in high purity cyanide solutions. J Electrochem Soc 148(4):D29–D36CrossRefGoogle Scholar
  14. 14.
    Bas AD, Safizadeh F, Zhang W, Ghali E, Choi Y (2015) Active and passive behaviors of gold in cyanide solutions. Trans Nonferrous Met Soc China 25:3442–3453CrossRefGoogle Scholar
  15. 15.
    Marsden JO, House CI (2006) The chemistry of gold extraction, 2nd edn. SME, EnglewoodGoogle Scholar
  16. 16.
    Huang P, Fuerstenau DW (2001) The effect of the adsorption of lead and cadmium ions on the interfacial behavior of quartz and talc. Colloids Surf A 177:147–156CrossRefGoogle Scholar
  17. 17.
    Reich TJ, Das S, Koretsky CM, Lund TJ, Landry CJ (2010) Surface complexation modeling of Pb(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. Chem Geol 275:262–271CrossRefGoogle Scholar
  18. 18.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. In: Chastain J (ed). Perkin-Elmer Corporation, MN, USAGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Queen’s UniversityKingstonCanada
  2. 2.Air Liquide CanadaMontrealCanada

Personalised recommendations