Advertisement

The Holocene Climates of South Africa

  • Jennifer M. Fitchett
Chapter
Part of the World Regional Geography Book Series book series (WRGBS)

Abstract

Variations in Holocene climate are of importance in understanding the contemporary diversity found in global climates and biogeography. This is particularly true for South Africa, which spans the subtropics and midlatitudes, and is bordered to the east by the warm Indian Ocean Agulhas Current, and to the west by the cold Atlantic Ocean Benguela Current. Holocene variations in South African climate include evidence for globally synchronous warming and cooling events, and for locally discrete variations in both precipitation amount and seasonality. The study of Holocene climates relies heavily on fossil proxies. Due to the aridity of much of the region in the Holocene, poor preservation of these proxies has been a critical challenge. Key future trajectories in South African Holocene climate science include concerted efforts to better spatially and temporally resolve the climate record, for key periods of interest, and more generally to determine local-scale climatic variability and climatic drivers.

Keywords

Multiproxy Precipitation Ocean currents Rainfall zones Seasonality 

References

  1. Alley RB, Ágústsdóttir AM (2005) The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24(10–11):1123–1149CrossRefGoogle Scholar
  2. Alley R, Bond G, Chappellaz J, Clapperton C, Del Genio A, Keigwin L, Peteet D (1993) Global Younger Dryas? EOS Trans Am Geophys Union 74(50):587–589CrossRefGoogle Scholar
  3. Andres MS, Bernasconi SM, McKenzie JA, Röhl U (2003) Southern Ocean deglacial record supports global Younger Dryas. Earth Planet Sci Lett 216(4):515–524CrossRefGoogle Scholar
  4. Bamford MK, Neumann FH, Scott L (2016) Pollen, charcoal and plant macrofossil evidence of Neogene and Quaternary environments in southern Africa. In: Knight J, Grab SW (eds) Quaternary environmental change in Southern Africa. Cambridge University Press, Cambridge, pp 306–323Google Scholar
  5. Barrable A, Meadows ME, Hewitson BC (2002) Environmental reconstruction and climate modelling of the Late Quaternary in the winter rainfall region of the Western Cape, South Africa. S Afr J Sci 98:611–616Google Scholar
  6. Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(5341):1257–1266CrossRefGoogle Scholar
  7. Burrough SL, Thomas DSG (2013) Central southern Africa at the time of the African humid period: a new analysis of Holocene palaeoenvironmental and palaeoclimate data. Quat Sci Rev 80:29–46CrossRefGoogle Scholar
  8. Burrough SL, Breman E, Dodd C (2012) Can phytoliths provide and insight into past vegetation of the middle Kalahari palaeolakes during the late Quaternary? J Arid Environ 82:156–164CrossRefGoogle Scholar
  9. Charman DJ, Brown AD, Hendon D, Karofeld E (2004) Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites. Quat Sci Rev 23(1–2):137–143CrossRefGoogle Scholar
  10. Chase BM, Meadows ME (2007) Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth Sci Rev 84(3–4):103–138CrossRefGoogle Scholar
  11. Chase BM, Meadows ME, Scott L, Thomas DSG, Marais E, Sealy J, Reimer PJ (2009) A record of rapid Holocene climate change preserved in hyrax middens from southwestern Africa. Geology 37(8):703–706CrossRefGoogle Scholar
  12. Chase BM, Boom A, Carr AS, Meadows ME, Reimer PJ (2013) Holocene climate change in southernmost South Africa: rock hyrax middens record shifts in the southern westerlies. Quat Sci Rev 82:199–205CrossRefGoogle Scholar
  13. Chase BM, Lim S, Chevalier M, Boom A, Carr AS, Meadows ME, Reimer PJ (2015a) Influence of tropical easterlies in southern Africa’s winter rainfall zone during the Holocene. Quat Sci Rev 107:138–148CrossRefGoogle Scholar
  14. Chase BM, Boom A, Carr AS, Carré M, Chevalier M, Meadows ME, Pedro JB, Stager JC, Reimer PJ (2015b) Evolving southwest African response to abrupt deglacial North Atlantic climate change events. Quat Sci Rev 121:132–136CrossRefGoogle Scholar
  15. Chevalier M, Chase BM (2016) Determining the drivers of long-term aridity variability: a southern African case study. J Quat Sci 31(2):143–151CrossRefGoogle Scholar
  16. Coetzee JA (1967) Pollen analytical studies in East and Southern Africa. Palaeoecol Afr 3:1–146Google Scholar
  17. Cordova C, Avery G (2017) African savanna elephants and their vegetation associations in the Cape Region, South Africa: opal phytoliths from dental calculus on prehistoric, historic and reserve elephants. Quat Int 443(A):189–211CrossRefGoogle Scholar
  18. Cuffey KM, Clow GD (1997) Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J Geophys Res 102(C12):26383–26396CrossRefGoogle Scholar
  19. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–220CrossRefGoogle Scholar
  20. Dupont LM, Kim J-H, Schneider RR, Shi N (2004) Southwest African climate independent of Atlantic sea surface temperatures during the Younger Dryas. Quat Res 61(3):318–324CrossRefGoogle Scholar
  21. Engelbrecht CJ, Landman WA, Engelbrecht FA, Malherbe J (2015) A synoptic decomposition of rainfall over the Cape south coast of South Africa. Clim Dyn 44(9–10):2589–2607CrossRefGoogle Scholar
  22. Esterhuysen AB, Mitchell P (1996) Palaeoenvironmental and archaeological implications of charcoal assemblages from Holocene sites in western Lesotho, Southern Africa. Palaeoecol Afr 24:203–232Google Scholar
  23. Finné M, Norström E, Risberg J, Scott L (2010) Siliceous microfossils as late-Quaternary paleo-environmental indicators at Braamhoek wetland, South Africa. The Holocene 20(5):747–760CrossRefGoogle Scholar
  24. Fitchett JM, Bamford MK (2017) The validity of the Asteraceae: poaceae fossil pollen ratio in discrimination of the southern African summer- and winter-rainfall zones. Quat Sci Rev 160:85–95CrossRefGoogle Scholar
  25. Fitchett JM, Knight J, Grab SW (2016a) Minerogenic microfossil records of Quaternary environmental change in southern Africa. In: Knight J, Grab SW (eds) Quaternary environmental change in Southern Africa: physical and human dimensions. Cambridge University Press, Cambridge, pp 324–348Google Scholar
  26. Fitchett JM, Mackay AW, Grab SW, Bamford MK (2016b) Holocene climatic variability indicated by a multi-proxy record from southern Africa’s highest wetland. The Holocene 27(5):638–650CrossRefGoogle Scholar
  27. Fitchett JM, Grab SW, Bamford MK, Mackay AW (2017) Late Quaternary research in southern Africa: progress, challenges and future trajectories. Trans R Soc S Afr 72(3):280–293CrossRefGoogle Scholar
  28. Gaffney O, Steffen W (2017) The Anthropocene equation. Anthrop Rev 4(1):53–61CrossRefGoogle Scholar
  29. Guiot J, Harrison SP, Prentice IC (1993) Reconstruction of Holocene precipitation patterns in Europe using pollen and lake-level data. Quat Res 40(2):139–149CrossRefGoogle Scholar
  30. Haberzettl T, Baade J, Compton J, Daut G, Dupont L, Finch J, Frenzel P, Green A, Hahn A, Hebbeln D, Helmschrot J, Humphries M, Kasper T, Kirsten K, Mäusbacher R, Meadows M, Meschner S, Quick L, Schefuß E, Wündsch M, Zabel M (2014) Palaeoenvironmental investigations using a combination of terrestrial and marine sediments from South Africa – the RAIN (Regional Archives for Integrated iNvestigations) approach. Zbl Geol Paläontol I:55–73Google Scholar
  31. Hahn A, Schefuß E, Andò S, Cawthra HC, Frenzel P, Kugel M, Meschner S, Mollenhauer G, Zabel M (2017) Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa. Clim Past 13(6):649–665CrossRefGoogle Scholar
  32. Holmgren K, Karlén W, Lauritzen SE, Lee-Thorp JA, Partridge TC, Piketh S, Repinski P, Stevenson C, Svanered O, Tyson PD (1999) A 3000-year high-resolution stalagmite-based record of palaeoclimate for northeastern South Africa. The Holocene 9(3):295–309CrossRefGoogle Scholar
  33. Holmgren K, Lee-Thorp JA, Cooper GRJ, Lundblad K, Partridge TC, Scott L, Sithaldeen R, Talma AS, Tyson PD (2003) Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quat Sci Rev 22(21–22):2311–2326CrossRefGoogle Scholar
  34. Lee-Thorp JA, Holmgren K, Lauritzen S-E, Linge H, Moberg A, Partridge TC, Stevenson C, Tyson PD (2001) Rapid climate shifts in the southern African interior throughout the mid to late Holocene. Geophys Res Lett 28(23):4507–4510CrossRefGoogle Scholar
  35. Mayeweski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62(3):243–255CrossRefGoogle Scholar
  36. Meadows ME (1988) Late Quaternary peat accumulation in southern Africa. Catena 15(5):459–472CrossRefGoogle Scholar
  37. Meadows ME (2014) Recent methodological advances in Quaternary palaeoecological proxies. Prog Phys Geogr 38(6):807–817CrossRefGoogle Scholar
  38. Mills SC, Grab SW, Rea BR, Carr SJ, Farrow A (2012) Shifting westerlies and precipitation patterns during the Late Pleistocene in southern Africa determined using glacier reconstruction and mass balance modelling. Quat Sci Rev 55:145–159CrossRefGoogle Scholar
  39. Mitchell P (2016) Later stone age hunter-gatherers and herders. In: Knight J, Grab SW (eds) Quaternary environmental change in Southern Africa: physical and human dimensions. Cambridge University Press, Cambridge, pp 385–396Google Scholar
  40. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6773):853–858CrossRefGoogle Scholar
  41. Neukom R, Nash DJ, Endfield GH, Grab SW, Grove CA, Kelso C, Vogel CH (2014) Multi-proxy summer and winter precipitation reconstruction for southern Africa over the last 200 years. Clim Dyn 42(9–10):2713–2726CrossRefGoogle Scholar
  42. Neumann FH, Scott L, Bousman CB, van As L (2010) A Holocene sequence of vegetation change at Lake Eteza, coastal KwaZulu-Natal, South Africa. Rev Palaeobot Palynol 162(1):39–53CrossRefGoogle Scholar
  43. Neumann FH, Botha GA, Scott L (2014) 18,000 years of grassland evolution in the summer rainfall region of South Africa: evidence from Mahwaqa Mountain, KwaZulu-Natal. Veg Hist Archaeobot 23(6):665–681CrossRefGoogle Scholar
  44. Nicholson SE, Nash DJ, Chase BM, Grab SW, Shanahan TM, Verschuren D, Asrat A, Lézine A-M, Umer M (2013) Temperature variability over Africa during the last 2000 years. The Holocene 23(8):1085–1094CrossRefGoogle Scholar
  45. Norström E, Scott L, Partridge TC, Risberg J, Holmgren K (2009) Reconstruction of environmental and climate changes at Braamhoek wetland, eastern escarpment South Africa, during the last 16,000 years with emphasis on the Pleistocene–Holocene transition. Palaeogeogr Palaeoclimatol Palaeoecol 271(3–4):240–258CrossRefGoogle Scholar
  46. Norström E, Neumann FH, Scott L, Smittenberg RH, Holmstrand H, Lundqvist S, Snowball I, Sundqvist HS, Risberg J, Bamford M (2014) Late Quaternary vegetation dynamics and hydro-climate in the Drakensberg, South Africa. Quat Sci Rev 105:48–65CrossRefGoogle Scholar
  47. Partridge TC, Scott L, Hamilton JE (1999) Synthetic reconstructions of southern African environments during the Last Glacial Maximum (21–18 kyr) and the Holocene Altithermal (8–6 kyr). Quat Int 57–58:207–214CrossRefGoogle Scholar
  48. Petherick L, Shulmeister J, Knight J, Rojas M (2016) SHeMax: the Last glacial maximum in the Southern Hemisphere. Quat Australas 33(2):32–34Google Scholar
  49. Quick LJ, Chase BM, Meadows ME, Scott L, Reimer PJ (2011) A 19.5 kyr vegetation history from the central Cederberg Mountains, South Africa: palynological evidence from rock hyrax middens. Palaeogeogr Palaeoclimatol Palaeoecol 309(3–4):253–270CrossRefGoogle Scholar
  50. Reinwarth B, Franz S, Baade J, Haberzettl T, Kasper T, Daut G, Helmschrot J, Kirsten KL, Quick LJ, Meadows ME, Mäusbacher R (2013) A 700-year record on the effects of climate and human impact on the southern Cape coast inferred from lake sediments of Eilandvlei, Wilderness Embayment, South Africa. Geogr Ann Ser B 95:345–360CrossRefGoogle Scholar
  51. Rotberg RI, Rabb TK (eds) (2014) Climate and history: Studies in interdisciplinary history. Princeton University Press, Princeton, p 292Google Scholar
  52. Scott L (1993) Palynological evidence for late Quaternary warming episodes in Southern Africa. Palaeogeogr Palaeoclimatol Palaeoecol 101(3–4):229–235CrossRefGoogle Scholar
  53. Scott L (1999) Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: a comparison of pollen data from the Tswaing Crater (the Pretoria Saltpan) and Wonderkrater. Quat Int 57–58:215–223CrossRefGoogle Scholar
  54. Scott L, Nyakale M (2002) Pollen indications of Holocene palaeoenvironments at Florisbad spring in the central Free State, South Africa. The Holocene 12(4):497–503CrossRefGoogle Scholar
  55. Scott L, Marais E, Brook GA (2004) Fossil hyrax dung and evidence of late Pleistocene and Holocene vegetation types in the Namib Desert. J Quat Sci 19(8):829–832CrossRefGoogle Scholar
  56. Scott L, Neumann FH, Brook GA, Bousman CB, Norström E, Metwally AA (2012) Terrestrial fossil-pollen evidence of climate change during the last 26 thousand years in Southern Africa. Quat Sci Rev 32:100–118CrossRefGoogle Scholar
  57. Smith JM, Lee-Thorpe JA, Sealy JC (2002) Stable carbon and oxygen isotopic evidence for late Pleistocene to middle Holocene climatic fluctuations in the interior of southern Africa. J Quat Sci 17(7):683–695CrossRefGoogle Scholar
  58. Stager JC, Mayewski PA, White J, Chase BM, Neumann FH, Meadows ME, King CD, Dixon DA (2012) Precipitation variability in the winter rainfall zone of South Africa during the last 1400 yr linked to the austral westerlies. Clim Past 8:877–887CrossRefGoogle Scholar
  59. Strachan KL, Hill TR, Finch JM, Barnett RL (2015) Vertical zonation of foraminifera assemblages in Galpins salt marsh, South Africa. J Foraminifer Res 45(1):29–41CrossRefGoogle Scholar
  60. Sundqvist HS, Holmgren K, Fohlmeister J, Zhang Q, Bar Matthews M, Spötl C, Körnich H (2013) Evidence of a large cooling between 1690 and 1740 AD in southern Africa. Sci Rep 3:1767.  https://doi.org/10.1038/srep01767CrossRefGoogle Scholar
  61. Thackeray JF, Fitchett JM (2016) Rainfall seasonality captured in micromammalian fauna in Late Quaternary contexts. Palaeontol Afr 51:1–9Google Scholar
  62. Thackeray JF, Scott L (2006) The Younger Dryas in the Wonderkrater sequence, South Africa? Ann Transv Mus 43(1):111–112Google Scholar
  63. Truc L, Chevalier M, Favier C, Cheddadi R, Meadows ME, Scott L, Carr AS, Smith GF, Chase BM (2013) Quantification of climate change for the last 20,000 years from Wonderkrater, South Africa: implications for the long-term dynamics of the Intertropical Convergence Zone. Palaeogeogr Palaeoclimatol Palaeoecol 386:575–587CrossRefGoogle Scholar
  64. Tyson PD, Lindesay JA (1992) The climate of the last 2000 years in southern Africa. The Holocene 2(3):271–278CrossRefGoogle Scholar
  65. Tyson PD, Preston-Whyte RA (2005) The weather and climate of Southern Africa. Oxford University Press, Cape Town, p 396Google Scholar
  66. Tyson PD, Karlén W, Holmgren K, Heiss GA (2000) The Little Ice Age and medieval warming in South Africa. S Afr J Sci 96(3):121–126Google Scholar
  67. Uhl D (2006) Fossil plants as palaeoenvironmental proxies – some remarks on selected approaches. Acta Palaeobotan 46(2):87–100Google Scholar
  68. Van Zinderen Bakker EM (1983) A late- and post-glacial pollen record from the Namib Desert. Palaeoecol Afr 16:421–428Google Scholar
  69. Van Zinderen Bakker EM, Coetzee JA (1988) A review of late Quaternary pollen studies in east, central and southern Africa. Rev Palaeobot Palynol 55:155–174CrossRefGoogle Scholar
  70. Wanner H (2014) Holocene climate. In: Freedman B (ed) Global environmental change. Springer, Amsterdam, pp 55–59Google Scholar
  71. Wanner H, Bütikofer J (2008) Holocene bond cycles: real or imaginary. Aust Geogr 4(113):338–349Google Scholar
  72. Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold event. Quat Sci Rev 30(21–22):3109–3123CrossRefGoogle Scholar
  73. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, Richter D dB, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe AP (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269):138–147CrossRefGoogle Scholar
  74. Weiser J, Baumann KH, Hahn A, Zabel M (2016) Late Holocene paleoceanographic changes off south-western Africa as inferred from coccolithophore assemblages. J Nanoplankton Res 36(2):161–171Google Scholar
  75. Wündsch M, Haberzettl T, Kirsten KL, Kasper T, Zabel M, Dietze E, Baade J, Daut G, Meschner S, Meadows ME, Mäusbacher R (2016) Sea level and climate change at the southern Cape coast, South Africa, during the past 4.2 kyr. Palaeogeogr Palaeoclimatol Palaeoecol 446:295–307CrossRefGoogle Scholar
  76. Zalasiewicz J, Waters CN, Wolfe AP, Barnosky AD, Cearreta A, Edgeworth M, Ellis EC, Fairchild IJ, Gradstein FM, Grinevald J, Haff P, Head MJ, Ivar do Sul JA, Jeandel C, Leinfelder R, McNeill JR, Oreskes N, Poirier C, Revkin A, Richter D dB, Steffen W, Summerhayes C, Syvitski JPM, Vidas D, Wagreich M, Wing S, Williams M (2017) Making the case for a formal Anthropocene Epoch: an analysis of ongoing critiques. Newsl Stratigr 50(2):205–226CrossRefGoogle Scholar
  77. Zhao X, Dupont L, Schefuß E, Meadows ME, Hahn A, Wefer G (2016) Holocene vegetation and climatic variability in the winter and summer rainfall zones of South Africa. The Holocene 26(6):843–857CrossRefGoogle Scholar
  78. Zinke J, Loveday BR, Reason CJC, Dullo W-C, Kroon D (2014) Madagascar corals track sea surface temperature variability in the Agulhas Current core region over the past 334 years. Sci Rep 4:4393.  https://doi.org/10.1038/srep04393CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations