Advertisement

Inferring Dysregulated Pathways of Driving Cancer Subtypes Through Multi-omics Integration

  • Kai Shi
  • Lin GaoEmail author
  • Bingbo Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10847)

Abstract

The rapid accumulation of multi-omics cancer data has created the opportunity for biological discovery and biomedical applications. In this study, we propose an approach that integrates multi-omics data to identify dysregulated pathways driving cancer subtypes, which simultaneously considers DNA methylation, DNA copy number, somatic mutation and gene expression profiles. After applying it to Breast Invasive Carcinoma (BRCA) in TCGA, we identify distinct top 30 dysregulated pathways for each breast cancer subtypes. The result suggests that dysregulated pathways of different subtypes display common and specific patterns. Furthermore, 44 differentially expressed genes with corresponding genetic and epigenetic dysregulation are retrieved from the subtype-specific pathways. Literature validation and functional enrichment analysis indicate that these genes are function associated with BRCA. Our method provides a new insight for identifying the driver of cancer subtypes through multi-omics data integration.

Keywords

Dysregulated pathways BRCA Data integration Maximum relevance minimum redundancy Disease gene 

Notes

Acknowledgements

This work was supported by the National NSFC (Grant No. 61532014 & No. 61432010 & No. 61672407 & No. 61772395), the Fundamental Research Funds for the Central Universities (No. JB150303) and the Fundamental Research Funds for young teacher (2017KY0264).

Supplementary material

470433_1_En_9_MOESM1_ESM.pdf (47 kb)
Supplementary material 1 (pdf 46 KB)

References

  1. 1.
    Adams, J.R., Schachter, N.F., Liu, J.C., et al.: Elevated PI3K signaling drives multiple breast cancer subtypes. Oncotarget 2(6), 435–447 (2011)CrossRefGoogle Scholar
  2. 2.
    Andre, F., Job, B., Dessen, P., et al.: Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 15(2), 441–451 (2009)CrossRefGoogle Scholar
  3. 3.
    Balko, J.M., Schwarz, L.J., Bhola, N.E., et al.: Activation of MAPK pathways due to DUSP4 loss promotes cancer stem cell-like phenotypes in basal-like breast cancer. Cancer Res. 73(20), 6346–6358 (2013)CrossRefGoogle Scholar
  4. 4.
    Bergamaschi, A., Kim, Y.H., Wang, P., et al.: Distinct patterns of dna copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes. Chromosom. Cancer 45(11), 1033–1040 (2006)CrossRefGoogle Scholar
  5. 5.
    Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012)CrossRefGoogle Scholar
  6. 6.
    Cheng, F., Zhao, J., Zhao, Z.: Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Brief. Bioinform. 17(4), 642–656 (2015)CrossRefGoogle Scholar
  7. 7.
    Creixell, P., Reimand, J., Haider, S., et al.: Pathway and network analysis of cancer genomes. Nat. Methods 12(7), 615 (2015)CrossRefGoogle Scholar
  8. 8.
    Dimitrakopoulos, C.M., Beerenwinkel, N.: Computational approaches for the identification of cancer genes and pathways. Wiley Interdiscip. Rev. Syst. Biol. Med. 9(1) (2017)Google Scholar
  9. 9.
    Dutta, B., Pusztai, L., Qi, Y., et al.: A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes. Br. J. Cancer 106(6), 1107–1116 (2012)CrossRefGoogle Scholar
  10. 10.
    Eckert, L.B., Repasky, G.A., Ulkü, A.S., et al.: Involvement of ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 64(13), 4585–4592 (2004)CrossRefGoogle Scholar
  11. 11.
    Fruman, D.A., Chiu, H., Hopkins, B.D., Bagrodia, S., et al.: The PI3K pathway in human disease. Cell 170(4), 605–635 (2017)CrossRefGoogle Scholar
  12. 12.
    Futreal, P.A., Coin, L., Marshall, M., et al.: A census of human cancer genes. Nat. Rev. Cancer 4(3), 177–183 (2004)CrossRefGoogle Scholar
  13. 13.
    Glaser, S.L., Ambinder, R.F., DiGiuseppe, J.A., et al.: Absence of Epstein-Barr virus EBER-1 transcripts in an epidemiologically diverse group of breast cancers. Int. J. Cancer 75(4), 555–558 (1998)CrossRefGoogle Scholar
  14. 14.
    Han, L., Maciejewski, M., Brockel, C., et al.: A probabilistic pathway score (PROPS) for classification with applications to inflammatory bowel disease. Bioinformatics 1, 9 (2017)Google Scholar
  15. 15.
    Hollander, M.C., Blumenthal, G.M., Dennis, P.A.: PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 11(4), 289–301 (2011)CrossRefGoogle Scholar
  16. 16.
    Hung, J.H., Whitfield, T.W., Yang, T.H., et al.: Identification of functional modules that correlate with phenotypic difference: the influence of network topology. Genome Biol. 11(2), 1 (2010)CrossRefGoogle Scholar
  17. 17.
    Isakoff, S.J., Engelman, J.A., Irie, H.Y., et al.: Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 65(23), 10992–11000 (2005)CrossRefGoogle Scholar
  18. 18.
    Jhaveri, T.Z., Woo, J., Shang, X., et al.: AMP-activated kinase (AMPK) regulates activity of HER2 and EGFR in breast cancer. Oncotarget 6(17), 14754–14765 (2015)CrossRefGoogle Scholar
  19. 19.
    Khabaz, M.N.: Association of Epstein-Barr virus infection and breast carcinoma. Arch. Med. Sci. 9(4), 745–751 (2013)CrossRefGoogle Scholar
  20. 20.
    Lee, E., Chuang, H.Y., Kim, J.W., et al.: Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4(11), e1000217 (2008)CrossRefGoogle Scholar
  21. 21.
    Li, D.M., Feng, Y.M.: Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res. Treat. 128(1), 7–21 (2011)CrossRefGoogle Scholar
  22. 22.
    Liu, W., Bai, X., Liu, Y., et al.: Topologically inferring pathway activity toward precise cancer classification via integrating genomic and metabolomic data: prostate cancer as a case. Sci. Rep. 5, 13192 (2015)CrossRefGoogle Scholar
  23. 23.
    Logue, J.S., Morrison, D.K.: Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev. 26(7), 641–650 (2012)CrossRefGoogle Scholar
  24. 24.
    Magrath, I., Bhatia, K.: Breast cancer: a new Epstein-Barr virus-associated disease? J. Natl. Cancer Inst. 91(16), 1349–1350 (1999)CrossRefGoogle Scholar
  25. 25.
    Marcotte, R., Sayad, A., Brown, K.R., et al.: Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell 164(1–2), 293–309 (2016)CrossRefGoogle Scholar
  26. 26.
    McLaughlin, S.K., Olsen, S.N., et al.: The RasGAP gene, RASAL2, is a tumor and metastasis suppressor. Cancer Cell 24(3), 365–378 (2013)CrossRefGoogle Scholar
  27. 27.
    Mosesson, Y., Mills, G.B., Yarden, Y.: Derailed endocytosis: an emerging feature of cancer. Nat. Rev. Cancer 8(11), 835–850 (2008)CrossRefGoogle Scholar
  28. 28.
    Ouadid-Ahidouch, H., Dhennin-Duthille, I., Gautier, M., et al.: TRP calcium channel and breast cancer: expression, role and correlation with clinical parameters. Bull. Cancer 99(6), 655–664 (2012)CrossRefGoogle Scholar
  29. 29.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  30. 30.
    Troxell, M.L., Levine, J., Beadling, C., et al.: High prevalence of PIK3CA/AKT pathway mutations in papillary neoplasms of the breast. Mod. Pathol. Off. J. U.S. Can. Acad. Pathol. Inc. 23(1), 27–37 (2010)Google Scholar
  31. 31.
    Ulitsky, I., Shamir, R.: Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks. Mol. Syst. Biol. 3, 104 (2007)CrossRefGoogle Scholar
  32. 32.
    Zhang, J., Zhang, S.: Discovery of cancer common and specific driver gene sets. Nucleic Acids Res. 45(10), e86 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyXidian UniversityXianChina
  2. 2.College of ScienceGuilin University of TechnologyGuilinChina

Personalised recommendations