Advertisement

The Review of the Major Entropy Methods and Applications in Biomedical Signal Research

  • Guangdi Liu
  • Yuan Xia
  • Chuanwei Yang
  • Le Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10847)

Abstract

Since biomedical signals are high dimensional data sets with a lot of noise signal, the results processed by the classical signal processing method are subjected to the impact of the noise and interference. Entropy as a measure of disorder or uncertainty in the data has been applied in signal processing research areas. This review is to introduce the application of entropy in the analysis of biomedical signals and discuss the advantages and shortcomings of various entropies. Especially, the utilization and application of entropy concept in cancer research are highlighted.

Keywords

Shannon entropy Biomedical signal Cancer research Approximate entropy Correntropy 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 61372138) and the National Science and Technology Major Project (No. 2018ZX10201002).

References

  1. 1.
    Chang, T., Dai, M., Xu, C., Fu, F., You, F., Dong, X.: Research on eit boundary measured voltage data denoising based on a subspace method. Biotechnol. Biotechnol. Equip. 27, 4157–4161 (2013)CrossRefGoogle Scholar
  2. 2.
    Enderle, J., Blanchard, S., Bronzino, J.: Introduction to Biomedical Engineering. Xi’an Jiaotong University Press (2010)Google Scholar
  3. 3.
    Goette, J.: Review of Various Biomedical SignalsGoogle Scholar
  4. 4.
    Clausius, R.: Ueber die Wärmeleitung gasförmiger Körper. Annalen Der Physik 191, 1–56 (2010)CrossRefGoogle Scholar
  5. 5.
    Bao, R., Rong, H., Angelov, P.P., Chen, B., Wong, P.K.: Correntropy-based evolving fuzzy neural system. IEEE Trans. Fuzzy Syst. PP, 1 (2017)Google Scholar
  6. 6.
    Wang, W., Zhao, J., Qu, H., Chen, B.: A correntropy inspired variable step-size sign algorithm against impulsive noises. Sig. Process. 141, 168–175 (2017)CrossRefGoogle Scholar
  7. 7.
    Peng, S., Chen, B., Sun, L., Ser, W., Lin, Z.: Constrained maximum correntropy adaptive filtering. Sig. Process. 140, 116–126 (2017)CrossRefGoogle Scholar
  8. 8.
    Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grassberger, P.: Finite sample corrections to entropy and dimension estimates. Phys. Lett. A 128, 369–373 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)CrossRefGoogle Scholar
  11. 11.
    Grassberger, P., Schreiber, T., Schaffrath, C.: Nonlinear time sequence analysis. Int. J. Bifurcat. Chaos 01, 9100040 (1991)CrossRefGoogle Scholar
  12. 12.
    Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039 (2000)CrossRefGoogle Scholar
  13. 13.
    Yan, J.-J., Wang, Y.-Q., Guo, R., Zhou, J.-Z., Yan, H.-X., Xia, C.-M., Shen, Y.: Nonlinear analysis of auscultation signals in TCM using the combination of wavelet packet transform and sample entropy. Evid.-Based Complement. Altern. Med. 2012 (2012)Google Scholar
  14. 14.
    Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: properties and applications in non-gaussian signal processing. IEEE Trans. Sig. Process. 55, 5286–5298 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, B., Xing, L., Zhao, H., Zheng, N., Prıncipe, J.C.: Generalized correntropy for robust adaptive filtering. IEEE Trans. Sig. Process. 64, 3376–3387 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Clausius, R.: On the Motive Power of Heat, and on the Laws Which Can Be Deduced From It for the Theory of Heat (1960)Google Scholar
  17. 17.
    Borowska, M.: Entropy-based algorithms in the analysis of biomedical signals. Stud. Log. Gramm. Rhetor. 43, 21–32 (2015)Google Scholar
  18. 18.
    Goldstein, S., Lebowitz, J.L.: On the (Boltzmann) entropy of non-equilibrium systems. Physica D 193, 53–66 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Stephen, G.: Vorlesungen über Gastheorie. University of California Press (1964)Google Scholar
  20. 20.
    Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)CrossRefGoogle Scholar
  21. 21.
    Li, J., Ning, X., Ma, O.: Nonlinear dynamical complexity analysis of short-term heartbeat series using joint entropy. J. Biomed. Eng. 24, 285–289 (2007)Google Scholar
  22. 22.
    Chen, W., Wang, Z., Xie, H., Yu, W.: Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 266 (2007)CrossRefGoogle Scholar
  23. 23.
    Liu, C., Zhao, L.: Using fuzzy measure entropy to improve the stability of traditional entropy measures. In: Computing in Cardiology, pp. 681–684. IEEE (2011)Google Scholar
  24. 24.
    Shannon, C.E.: The mathematical theory of communication. 1963. MD Comput. Med. Pract. 14, 306 (1997)Google Scholar
  25. 25.
    Shannon, C.E.: A mathematical theory of communication: the bell system technical journal. J. Franklin Inst. 196, 519–520 (1938)Google Scholar
  26. 26.
    Shannon, C.: A Mathematical Theory of Communication (1948)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schneider, T.D.: Information Theory Primer (1995)Google Scholar
  28. 28.
    Tellenbach, B., Burkhart, M., Sornette, D., Maillart, T.: Beyond shannon: characterizing internet traffic with generalized entropy metrics. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 239–248. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00975-4_24CrossRefGoogle Scholar
  29. 29.
    Acharya, U.R., Fujita, H., Sudarshan, V.K., Bhat, S., Koh, J.E.W.: Application of entropies for automated diagnosis of epilepsy using EEG signals. Knowl.-Based Syst. 88, 85–96 (2015)CrossRefGoogle Scholar
  30. 30.
    Bruhn, J., Lehmann, L.E., Röpcke, H., Bouillon, T.W., Hoeft, A.: Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiol.: J. Am. Soc. Anesthesiol. 95, 30–35 (2001)CrossRefGoogle Scholar
  31. 31.
    Fuhrman, S., Cunningham, M.J., Wen, X., Zweiger, G., Seilhamer, J.J., Somogyi, R.: The application of Shannon entropy in the identification of putative drug targets. Biosystems 55, 5–14 (2000)CrossRefGoogle Scholar
  32. 32.
    De Araujo, D., Tedeschi, W., Santos, A., Elias, J., Neves, U., Baffa, O.: Shannon entropy applied to the analysis of event-related fMRI time series. NeuroImage 20, 311–317 (2003)CrossRefGoogle Scholar
  33. 33.
    Heikkila, E.J., Hu, L.: Adjusting spatial-entropy measures for scale and resolution effects. Environ. Plan. 33, 845–861 (2006)CrossRefGoogle Scholar
  34. 34.
    Feldman, D.P., Crutchfield, J.P.: Measures of statistical complexity: why? Phys. Lett. A 238, 244–252 (1997)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos: An Interdisciplinary. J. Nonlinear Sci. 5, 110–117 (1995)Google Scholar
  36. 36.
    Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617 (1985)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Fleisher, L.A., Dipietro, J.A., Johnson, T.R., Pincus, S.: Complementary and non-coincident increases in heart rate variability and irregularity during fetal development. Clin. Sci. 92, 345–349 (1997)CrossRefGoogle Scholar
  38. 38.
    Fleisher, L.A., Pincus, S.M., Rosenbaum, S.H.: Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction. Anesthesiology 78, 683–692 (1993)CrossRefGoogle Scholar
  39. 39.
    Goldberger, A.L., Mietus, J.E., Rigney, D.R., Wood, M.L., Fortney, S.M.: Effects of head-down bed rest on complex heart rate variability: response to LBNP testing. J. Appl. Physiol. 77, 2863–2869 (1994)CrossRefGoogle Scholar
  40. 40.
    Mäkikallio, T.H., Seppänen, T., Niemelä, M., Airaksinen, K.E.J., Tulppo, M., Huikuri, H.V.: Abnormalities in beat to beat complexity of heart rate dynamics in patients with a previous myocardial infarction 1. J. Am. Coll. Cardiol. 28, 1005–1011 (1996)CrossRefGoogle Scholar
  41. 41.
    Korpelainen, J.T., Sotaniemi, K.A., Mäkikallio, A., Huikuri, H.V., Myllylä, V.V.: Dynamic behavior of heart rate in ischemic stroke. Stroke 30, 1008–1013 (1999)CrossRefGoogle Scholar
  42. 42.
    Palazzolo, J.A., Estafanous, F.G., Murray, P.A.: Entropy measures of heart rate variation in conscious dogs. Am. J. Physiol. 274, H1099 (1998)Google Scholar
  43. 43.
    Mäkikallio, T.H., Ristimäe, T., Airaksinen, K.E.J., Peng, C.K., Goldberger, A.L., Huikuri, H.V.: Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am. J. Cardiol. 81, 27–31 (1998)CrossRefGoogle Scholar
  44. 44.
    Ho, K.K., Moody, G.B., Peng, C.K., Mietus, J.E., Larson, M.G., Levy, D., Goldberger, A.L.: Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96, 842 (1997)CrossRefGoogle Scholar
  45. 45.
    Lipsitz, L.A., Pincus, S.M., Morin, R.J., Tong, S., Eberle, L.P., Gootman, P.M.: Preliminary evidence for the evolution in complexity of heart rate dynamics during autonomic maturation in neonatal swine. J. Auton. Nerv. Syst. 65, 1 (1997)CrossRefGoogle Scholar
  46. 46.
    Nelson, J.C., Rizwan-uddin, Griffin, M.P., Moorman, J.R.: Probing the order within neonatal heart rate variability. Pediatr. Res. 43, 823–831 (1998)CrossRefGoogle Scholar
  47. 47.
    Hogue, C.W., Domitrovich, P.P., Stein, P.K., Despotis, G.D., Re, L., Schuessler, R.B., Kleiger, R.E., Rottman, J.N.: RR interval dynamics before atrial fibrillation in patients after coronary artery bypass graft surgery. Circulation 98, 429–434 (1998)CrossRefGoogle Scholar
  48. 48.
    Pincus, S.M., Viscarello, R.R.: Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79, 249–255 (1992)Google Scholar
  49. 49.
    Ryan, S.M., Goldberger, A.L., Pincus, S.M., Mietus, J., Lipsitz, L.A.: Gender- and age-related differences in heart rate dynamics: are women more complex than men? J. Am. Coll. Cardiol. 24, 1700 (1994)CrossRefGoogle Scholar
  50. 50.
    Pincus, S.M., Cummins, T.R., Haddad, G.G.: Heart rate control in normal and aborted-SIDS infants. Am. J. Physiol. 264, R638 (1993)Google Scholar
  51. 51.
    Tulppo, M.P., Makikallio, T.H., Takala, T.E., Seppanen, T., Huikuri, H.V.: Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. 271, 244–252 (1996)Google Scholar
  52. 52.
    Pincus, S.M., Gladstone, I.M., Ehrenkranz, R.A.: A regularity statistic for medical data analysis. J. Clin. Monit. 7, 335–345 (1991)CrossRefGoogle Scholar
  53. 53.
    Schuckers, S.A.C.: Use of approximate entropy measurements to classify ventricular tachycardia and fibrillation. J. Electrocardiol. 31, 101–105 (1998)CrossRefGoogle Scholar
  54. 54.
    Seely Andrew, J.E., Macklem, P.T.: Complex systems and the technology of variability analysis. Crit. Care 8, R367 (2004)CrossRefGoogle Scholar
  55. 55.
    Akareddy, S.M., Kulkarni, P.K.: EEG signal classification for epilepsy seizure detection using improved approximate entropy. Int. J. Public Health Sci. 2, 23–32 (2013)Google Scholar
  56. 56.
    Hornero, R., Aboy, M., Abasolo, D., Mcnames, J., Goldstein, B.: Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Trans. Biomed. Eng. 52, 1671–1680 (2005)CrossRefGoogle Scholar
  57. 57.
    Veldhuis, J.D., Liem, A.Y., South, S., Weltman, A., Weltman, J., Clemmons, D.A., Abbott, R., Mulligan, T., Johnson, M.L., Pincus, S.: Differential impact of age, sex steroid hormones, and obesity on basal versus pulsatile growth hormone secretion in men as assessed in an ultrasensitive chemiluminescence assay. J. Clin. Endocrinol. Metab. 80, 3209–3222 (1995)Google Scholar
  58. 58.
    Chakraborty, B., Bhattacharyya, S., Dutta, P.: An unsupervised video shot boundary detection technique using fuzzy entropy estimation of video content (2011)Google Scholar
  59. 59.
    Ahmed, M., Chanwimalueang, T., Thayyil, S., Mandic, D.: A multivariate multiscale fuzzy entropy algorithm with application to uterine EMG complexity analysis. Entropy 19, 2 (2016)CrossRefGoogle Scholar
  60. 60.
    Bhattacharyya, A., Pachori, R.B., Acharya, U.R.: Tunable-Q wavelet transform based multivariate sub-band fuzzy entropy with application to focal EEG signal analysis. Entropy 19(3), 01–14 (2017)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Porta, A., Guzzetti, S., Montano, N., Furlan, R., Pagani, M., Malliani, A., Cerutti, S.: Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Bio-med. Eng. 48, 1282–1291 (2001)CrossRefGoogle Scholar
  62. 62.
    Porta, A., Castiglioni, P., Bari, V., Bassani, T., Marchi, A., Cividjian, A., Quintin, L., Di, R.M.: K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control. Physiol. Meas. 34, 17 (2013)CrossRefGoogle Scholar
  63. 63.
    Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)CrossRefGoogle Scholar
  64. 64.
    Li, X., Ouyang, G., Richards, D.A.: Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77, 70–74 (2007)CrossRefGoogle Scholar
  65. 65.
    Liang, Z., Wang, Y., Sun, X., Li, D., Voss, L.J., Sleigh, J.W., Satoshi, H., Li, X.: EEG entropy measures in anesthesia. Front. Comput. Neurosci. 9, 16 (2015)CrossRefGoogle Scholar
  66. 66.
    Zanin, M., Zunino, L., Rosso, O.A., Papo, D.: Permutation entropy and its main biomedical and econophysics applications: a review. Entropy 14, 1553–1577 (2012)CrossRefGoogle Scholar
  67. 67.
    Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 87, 022911 (2013)CrossRefGoogle Scholar
  68. 68.
    Shiryayev, A.N.: New metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. In: Shiryayev, A.N. (ed.) Selected Works of A. N. Kolmogorov. Mathematics and Its Applications, vol. 27, pp. 57–61. Springer, Dordrecht (1993).  https://doi.org/10.1007/978-94-017-2973-4_5CrossRefGoogle Scholar
  69. 69.
    Xu, Q.: Measuring information content from observations for data assimilation: relative entropy versus Shannon entropy difference. Tellus A 59, 198–209 (2007)CrossRefGoogle Scholar
  70. 70.
    Abel, M., Biferale, L., Cencini, M., Falcioni, M., Vergni, D., Vulpiani, A.: Exit-time approach to ε-entropy. Phys. Rev. Lett. 84, 6002 (2000)CrossRefGoogle Scholar
  71. 71.
    Santamaria, I., Pokharel, P.P., Principe, J.C.: Generalized correlation function: definition, properties, and application to blind equalization. IEEE Trans. Sig. Process. 54, 2187–2197 (2006)CrossRefGoogle Scholar
  72. 72.
    Li, R., Liu, W., Principe, J.C.: A unifying criterion for instantaneous blind source separation based on correntropy. Sig. Process. 87, 1872–1881 (2009)CrossRefGoogle Scholar
  73. 73.
    Wu, Z., Peng, S., Chen, B., Zhao, H.: Robust hammerstein adaptive filtering under maximum correntropy criterion. Entropy 17, 7149–7166 (2015)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Jeong, K.H.: The correntropy mace filter for image recognition. In: Proceedings of the 2006 IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, pp. 9–14 (2006)Google Scholar
  75. 75.
    Ma, W., Qu, H., Gui, G., Xu, L., Zhao, J., Chen, B.: Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J. Franklin Inst. 352, 2708–2727 (2015)CrossRefGoogle Scholar
  76. 76.
    Zhang, L., Liu, Y., Wang, M., Wu, Z., Li, N., Zhang, J., Yang, C.: EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J. Mol. Cell Biol. 9, 477–488 (2017).  https://doi.org/10.1093/jmcb/mjx056CrossRefGoogle Scholar
  77. 77.
    Singh, A., Principe, J.C.: Using Correntropy as a cost function in linear adaptive filters. In: International Joint Conference on Neural Networks, pp. 2950–2955 (2009)Google Scholar
  78. 78.
    Chen, B., Principe, J.C.: Maximum correntropy estimation is a smoothed MAP estimation. IEEE Sig. Process. Lett. 19, 491–494 (2012)CrossRefGoogle Scholar
  79. 79.
    Chen, B., Liu, X., Zhao, H., Principe, J.C.: Maximum correntropy Kalman filter ☆. Automatica 76, 70–77 (2017)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Chen, B., Xing, L., Liang, J., Zheng, N., Principe, J.C.: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Sig. Process. Lett. 21, 880–884 (2014)CrossRefGoogle Scholar
  81. 81.
    Lu, L., Zhao, H.: Active impulsive noise control using maximum correntropy with adaptive kernel size. Mech. Syst. Sig. Process. 87, 180–191 (2017)CrossRefGoogle Scholar
  82. 82.
    Wang, K., Xu, L., Li, Z., Zhang, D.: Approximate entropy based pulse variability analysis. In: Proceedings of the IEEE Symposium on Computer-Based Medical Systems, pp. 236–241 (2003)Google Scholar
  83. 83.
    Mayer, C., Bachler, M., Holzinger, A., Stein, P., Wassertheurer, S.: The effect of threshold values and weighting factors on the association between entropy measures and mortality after myocardial infarction in the cardiac arrhythmia suppression trial (CAST). Entropy 18, 129 (2016)CrossRefGoogle Scholar
  84. 84.
    Chicote, B., Irusta, U., Alcaraz, R., Rieta, J.J., Aramendi, E., Isasi, I., Alonso, D., Ibarguren, K.: Application of entropy-based features to predict defibrillation outcome in cardiac arrest. Entropy 18, 313 (2016)CrossRefGoogle Scholar
  85. 85.
    Hagmair, S., Bachler, M., Braunisch, M.C., Lorenz, G., Schmaderer, C., Hasenau, A.L., Stülpnagel, L.V., Bauer, A., Rizas, K.D., Wassertheurer, S.: Challenging recently published parameter sets for entropy measures in risk prediction for end-stage renal disease patients. Entropy 19, 582 (2017)CrossRefGoogle Scholar
  86. 86.
    Ferlazzo, E., Mammone, N., Cianci, V., Gasparini, S., Gambardella, A., Labate, A., Latella, M.A., Sofia, V., Elia, M., Morabito, F.C.: Permutation entropy of scalp EEG: a tool to investigate epilepsies: suggestions from absence epilepsies. Clin. Neurophysiol. Official J. Int. Fed. Clin. Neurophysiol. 125, 13–20 (2014)CrossRefGoogle Scholar
  87. 87.
    Li, J., Yan, J., Liu, X., Ouyang, G.: Using permutation entropy to measure the changes in EEG signals during absence seizures. Entropy 16, 3049–3061 (2014)CrossRefGoogle Scholar
  88. 88.
    Melia, U., Guaita, M., Vallverdú, M., Montserrat, J.M., Vilaseca, I., Salamero, M., Gaig, C., Caminal, P., Santamaria, J.: Correntropy measures to detect daytime sleepiness from EEG signals. Physiol. Meas. 35, 2067 (2014)CrossRefGoogle Scholar
  89. 89.
    Gatenby, R.A., Frieden, B.R.: Information dynamics in carcinogenesis and tumor growth. Mutat. Res. 568, 259 (2004)CrossRefGoogle Scholar
  90. 90.
    Ritchie, W., Granjeaud, S., Puthier, D., Gautheret, D.: Entropy measures quantify global splicing disorders in cancer. PLoS Comput. Biol. 4, e1000011 (2008)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Banerji, C.R.S., Severini, S., Caldas, C., Teschendorff, A.E.: Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer. PLoS Comput. Biol. 11, e1004115 (2015)CrossRefGoogle Scholar
  92. 92.
    Teschendorff, A.E., Enver, T.: Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat. Commun. 8, 15599 (2017)CrossRefGoogle Scholar
  93. 93.
    Regina Berretta, P.M.: Cancer biomarker discovery: the entropic hallmark. PLoS ONE 5, e12262 (2010)CrossRefGoogle Scholar
  94. 94.
    Newton, P.K., Jeremy, M., Brian, H., Kelly, B., Lyudmila, B., Jorge, N., Peter, K.: Entropy, complexity, and Markov diagrams for random walk cancer models. Sci. Rep. 4, 7558 (2014)CrossRefGoogle Scholar
  95. 95.
    Kayser, K., Kayser, G., Metze, K.: The concept of structural entropy in tissue-based diagnosis. Anal. Quant. Cytol. Histol. 29, 296 (2007)zbMATHGoogle Scholar
  96. 96.
    Castro, M.A., Onsten, T.T., de Almeida, R.M., Moreira, J.C.: Profiling cytogenetic diversity with entropy-based karyotypic analysis. J. Theor. Biol. 234, 487 (2005)CrossRefGoogle Scholar
  97. 97.
    Nielsen, B., Hveem, T.S., Kildal, W., Abeler, V.M., Kristensen, G.B., Albregtsen, F., Danielsen, H.E., Rohde, G.K.: Entropy-based adaptive nuclear texture features are independent prognostic markers in a total population of uterine sarcomas. Cytometry Part A: J. Int. Soc. Anal. Cytol. 87, 315–325 (2015)CrossRefGoogle Scholar
  98. 98.
    Vollmer, R.T.: Entropy and information content of laboratory test results. Am. J. Clin. Pathol. 127, 60–65 (2007)CrossRefGoogle Scholar
  99. 99.
    Humeauheurtier, A.: The multiscale entropy algorithm and its variants: a review. Entropy 17, 3110–3123 (2016)MathSciNetCrossRefGoogle Scholar
  100. 100.
    Liu, H., Zhao, R., Fang, H., Cheng, F., Fu, Y., Liu, Y.Y.: A novel clustering method for patient stratification (2016)Google Scholar
  101. 101.
    Huang, N., Zhang, Y., Calawerts, W., Jiang, J.J.: Optimized nonlinear dynamic analysis of pathologic voices with laryngeal paralysis based on the minimum embedding dimension. J. Voice Official J. Voice Found. 31, 249.e1–249.e7 (2017)CrossRefGoogle Scholar
  102. 102.
    Ma, Y., Tseng, P.H., Ahn, A., Wu, M.S., Ho, Y.L., Chen, M.F., Peng, C.K.: Cardiac autonomic alteration and metabolic syndrome: an ambulatory ECG-based study in a general population. Sci. Rep. 7, 44363 (2017)CrossRefGoogle Scholar
  103. 103.
    Mourot, L., Bouhaddi, M., Perrey, S., Rouillon, J.D., Regnard, J.: Quantitative Poincaré plot analysis of heart rate variability: effect of endurance training. Eur. J. Appl. Physiol. 91, 79–87 (2004)CrossRefGoogle Scholar
  104. 104.
    Malik, S., Wong, N.D., Franklin, S.S., Kamath, T.V., Gilbert, J., Pio, J.R., Williams, G.R.: Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110, 1245–1250 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer and Information ScienceSouthwest UniversityChongqingChina
  2. 2.Library of Chengdu UniversityChengdu UniversityChengdu CityChina
  3. 3.Systems BiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.College of Computer ScienceSichuan UniversityChengduChina

Personalised recommendations