Advertisement

Locality Sensitive Imputation for Single-Cell RNA-Seq Data

  • Marmar Moussa
  • Ion I. Măndoiu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10847)

Abstract

One of the most notable challenges in single cell RNA-Seq data analysis is the so called drop-out effect, where only a fraction of the transcriptome of each cell is captured. The random nature of drop-outs, however, makes it possible to consider imputation methods as means of correcting for drop-outs. In this paper we study some existing scRNA-Seq imputation methods and propose a novel iterative imputation approach based on efficiently computing highly similar cells. We then present the results of a comprehensive assessment of existing and proposed methods on real scRNA-Seq datasets with varying per cell sequencing depth.

Keywords

Single cell RNA-Seq Imputation 

References

  1. 1.
    Azizi, E., Prabhakaran, S., Carr, A., Pe’er, D.: Bayesian inference for single-cell clustering and imputing. Genomics Comput. Biol. 3(1), 46 (2017)CrossRefGoogle Scholar
  2. 2.
    Duan, F., Duitama, J., Al Seesi, S., Ayres, C.M., Corcelli, S.A., Pawashe, A.P., Blanchard, T., McMahon, D., Sidney, J., Sette, A., et al.: Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J. Exp. Med. 211(11), 2231–2248 (2014)CrossRefGoogle Scholar
  3. 3.
    Hornik, K., Feinerer, I., Kober, M., Buchta, C.: Spherical k-means clustering. J. Stat. Softw. 50(10), 1–22 (2013)Google Scholar
  4. 4.
    Kwak, I.Y., Gong, W., Koyano-Nakagawa, N., Garry, D.: DrImpute: imputing dropout events in single cell RNA sequencing data. bioRxiv, p. 181479 (2017)Google Scholar
  5. 5.
    Lee, C., Măndoiu, I.I., Nelson, C.E.: Inferring ethnicity from mitochondrial DNA sequence. In: BMC Proceedings, vol. 5, p. S11. BioMed Central (2011)CrossRefGoogle Scholar
  6. 6.
    Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  7. 7.
    Li, C.L., Li, K.C., Wu, D., Chen, Y., Luo, H., Zhao, J.R., Wang, S.S., Sun, M.M., Lu, Y.J., Zhong, Y.Q., et al.: Somatosensory neuron types identified by high-coverage single-cell rna-sequencing and functional heterogeneity. Cell Res. 26(1), 83 (2016)CrossRefGoogle Scholar
  8. 8.
    Li, W.V., Li, J.J.: scImpute: accurate and robust imputation for single cell RNA-seq data. bioRxiv, p. 141598 (2017)Google Scholar
  9. 9.
    Lin, P., Troup, M., Ho, J.W.: CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18(1), 59 (2017)CrossRefGoogle Scholar
  10. 10.
    Mandric, I., Temate-Tiagueu, Y., Shcheglova, T., Al Seesi, S., Zelikovsky, A., Măndoiu, I.I.: Fast bootstrapping-based estimation of confidence intervals of expression levels and differential expression from RNA-seq data. Bioinformatics 33(20), 3302–3304 (2017)CrossRefGoogle Scholar
  11. 11.
    Moussa, M., Mandoiu, I.: Single cell RNA-seq data clustering using TF-IDF based methods. BMC-Genomics (2018, to appear)Google Scholar
  12. 12.
    Nicolae, M., Mangul, S., Mandoiu, I.I., Zelikovsky, A.: Estimation of alternative splicing isoform frequencies from RNA-seq data. Algorithms Mol. Biol. 6(1), 9 (2011)CrossRefGoogle Scholar
  13. 13.
    Prabhakaran, S., Azizi, E., Carr, A., Peer, D.: Dirichlet process mixture model for correcting technical variation in single-cell gene expression data. In: International Conference on Machine Learning, pp. 1070–1079 (2016)Google Scholar
  14. 14.
    Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., Regev, A.: Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33(5), 495 (2015)CrossRefGoogle Scholar
  15. 15.
    Selivanov, D.: dselivanov/LSHR. https://github.com/dselivanov/LSHR
  16. 16.
    Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)CrossRefGoogle Scholar
  17. 17.
    Van Asch, V.: Macro-and micro-averaged evaluation measures. Technical report (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science and Engineering DepartmentUniversity of ConnecticutStorrsUSA

Personalised recommendations