Advertisement

KSIBW: Predicting Kinase-Substrate Interactions Based on Bi-random Walk

  • Canshang Deng
  • Qingfeng Chen
  • Zhixian Liu
  • Ruiqing Zheng
  • Jin Liu
  • Jianxin Wang
  • Wei Lan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10847)

Abstract

Protein phosphorylation is an important chemical modification in the organism that regulates many cellular processes. In recent years, many algorithms for predicting kinase-substrate interactions have been proposed. However, most of those methods are mainly focused on utilizing protein sequence information. In this paper, we propose a computational framework, KSIBW, to predict kinase-substrate interactions based on bi-random walk. Unlike traditional methods, the protein-protein interaction (PPI) information are used to measure the similarities of kinase-kinase and substrate-substrate, respectively. Then, the bi-random walk is employed to identify potential kinase-substrate interactions. The experiment results show that our method outperforms other state-of-the-art algorithms in performance.

Keywords

Protein phosphorylation Kinase-substrate interactions Bi-random walk Protein-protein interaction network 

Notes

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China under Grant No. 61702122, 61751314, 31560317, 61702555, 61662028 and 61762087; Key project of Natural Science Foundation of Guangxi 2017GXNSFDA198033; Key research and development plan of Guangxi AB17195055 and Director Open Fund of Qinzhou City Key Laboratory of Advanced Technology of Internet of Things IOT2017A04.

References

  1. 1.
    Mann, M., Jensen, O.N.: Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21(3), 255–261 (2003)CrossRefGoogle Scholar
  2. 2.
    Lan, W., Wang, J., Li, M., Peng, W., Wu, F.: Computational approaches for prioritizing candidate disease genes based on PPI networks. Tsinghua Sci. Technol. 20(5), 500–512 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Grabiec, A.M., Korchynskyi, O., Tak, P.P., Reedquist, K.A.: Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis. 71(3), 424–431 (2012)CrossRefGoogle Scholar
  4. 4.
    Cohen, P.: The role of protein phosphorylation in human health and disease. FEBS J. 268(19), 5001–5010 (2001)Google Scholar
  5. 5.
    Aponte, A.M., Phillips, D., Harris, R.A., Blinova, K., French, S., Johnson, D.T., Balaban, R.S.: 32P labeling of protein phosphorylation and metabolite association in the mitochondria matrix. Methods Enzymol. 457, 63–80 (2009)CrossRefGoogle Scholar
  6. 6.
    Lin, J., Xie, Z., Zhu, H., Qian, J.: Understanding protein phosphorylation on a systems level. Brief. Funct. Genomics 9(1), 32–42 (2010)CrossRefGoogle Scholar
  7. 7.
    Dinkel, H., Chica, C., Via, A., Gould, C.M., Jensen, L.J., Gibson, T.J., Diella, F.: Phospho.ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Res. 39(Suppl\(\_\)1), D261–D267 (2010)CrossRefGoogle Scholar
  8. 8.
    Hornbeck, P.V., Kornhauser, J.M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V., Sullivan, M.: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40(D1), D261–D270 (2011)CrossRefGoogle Scholar
  9. 9.
    Chen, Q., Wang, Y., Chen, B., Zhang, C., Wang, L., Li, J.: Using propensity scores to predict the kinases of unannotated phosphopeptides. Knowl.-Based Syst. 135, 60–76 (2017)CrossRefGoogle Scholar
  10. 10.
    Linding, R., Jensen, L.J., Ostheimer, G.J., van Vugt, M.A., Jørgensen, C., Miron, I.M., Diella, F., Colwill, K., Taylor, L., Elder, K., et al.: Systematic discovery of in vivo phosphorylation networks. Cell 129(7), 1415–1426 (2007)CrossRefGoogle Scholar
  11. 11.
    Dang, T.H., Van Leemput, K., Verschoren, A., Laukens, K.: Prediction of kinase-specific phosphorylation sites using conditional random fields. Bioinformatics 24(24), 2857–2864 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhou, F.F., Xue, Y., Chen, G.L., Yao, X.: GPS: a novel group-based phosphorylation predicting and scoring method. Biochem. Biophys. Res. Commun. 325(4), 1443–1448 (2004)CrossRefGoogle Scholar
  13. 13.
    Song, C., Ye, M., Liu, Z., Cheng, H., Jiang, X., Han, G., Songyang, Z., Tan, Y., Wang, H., Ren, J., et al.: Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol. Cell. Proteomics 11(10), 1070–1083 (2012)CrossRefGoogle Scholar
  14. 14.
    Zou, L., Wang, M., Shen, Y., Liao, J., Li, A., Wang, M.: PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites. BMC Bioinform. 14(1), 247 (2013)CrossRefGoogle Scholar
  15. 15.
    Patrick, R., Lê Cao, K.A., Kobe, B., Bodén, M.: PhosphoPICK: modelling cellular context to map kinase-substrate phosphorylation events. Bioinformatics 31(3), 382–389 (2014)CrossRefGoogle Scholar
  16. 16.
    Fan, W., Xu, X., Shen, Y., Feng, H., Li, A., Wang, M.: Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest. Amino Acids 46(4), 1069–1078 (2014)CrossRefGoogle Scholar
  17. 17.
    Damle, N.P., Mohanty, D.: Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network. Bioinformatics 30(12), 1730–1738 (2014)CrossRefGoogle Scholar
  18. 18.
    Li, A., Xu, X., Zhang, H., Wang, M.: Kinase identification with supervised Laplacian regularized least squares. PLoS ONE 10(10), e0139676 (2015)CrossRefGoogle Scholar
  19. 19.
    Song, J., Wang, H., Wang, J., Leier, A., Marquez-Lago, T., Yang, B., Zhang, Z., Akutsu, T., Webb, G.I., Daly, R.J.: PhosphoPredict: a bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Sci. Rep. 7(1), 6862 (2017)CrossRefGoogle Scholar
  20. 20.
    Li, H., Wang, M., Xu, X.: Prediction of kinase-substrate relations based on heterogeneous networks. J. Bioinform. Comput. Biol. 13(06), 1542003 (2015)CrossRefGoogle Scholar
  21. 21.
    Qin, G.M., Li, R.Y., Zhao, X.M.: PhosD: inferring kinase-substrate interactions based on protein domains. Bioinformatics 33(8), 1197–1204 (2016)Google Scholar
  22. 22.
    Lan, W., Wang, J., Li, M., Liu, J., Wu, F.X., Pan, Y.: Predicting microRNA-disease associations based on improved microRNA and disease similarities. IEEE/ACM Trans. Comput. Biol. Bioinform. 99, 1 (2016)CrossRefGoogle Scholar
  23. 23.
    Liu, J., Li, M., Lan, W., Wu, F.X., Pan, Y., Wang, J.: Classification of Alzheimer’s disease using whole brain hierarchical network. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(2), 624–632 (2018)CrossRefGoogle Scholar
  24. 24.
    Lan, W., Wang, J., Li, M., Liu, J., Pan, Y.: Predicting microRNA-disease associations by integrating multiple biological information. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM, pp. 183–188. IEEE (2015)Google Scholar
  25. 25.
    Li, T., Wernersson, R., Hansen, R.B., Horn, H., Mercer, J., Slodkowicz, G., Workman, C.T., Rigina, O., Rapacki, K., Stærfeldt, H.H., et al.: A scored human protein-protein interaction network to catalyze genomic interpretation. Nat. Methods 14(1), 61–64 (2017)CrossRefGoogle Scholar
  26. 26.
    Luo, H., Wang, J., Li, M., Luo, J., Peng, X., Wu, F.X., Pan, Y.: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 32(17), 2664 (2016)CrossRefGoogle Scholar
  27. 27.
    Peng, W., Lan, W., Yu, Z., Wang, J., Pan, Y.: A framework for integrating multiple biological networks to predict microRNA-disease associations. IEEE Trans. Nanobiosci. 16(2), 100–107 (2017)CrossRefGoogle Scholar
  28. 28.
    Peng, W., Lan, W., Zhong, J., Wang, J., Pan, Y.: A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks. Methods 124, 69–77 (2017)CrossRefGoogle Scholar
  29. 29.
    Irish, J.M., Ånensen, N., Hovland, R., Skavland, J., Børresen-Dale, A.L., Bruserud, Ø., Nolan, G.P., Gjertsen, B.T.: Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109(6), 2589–2596 (2007)CrossRefGoogle Scholar
  30. 30.
    Ball, H.L., Myers, J.S., Cortez, D.: ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol. Biol. Cell 16(5), 2372–2381 (2005)CrossRefGoogle Scholar
  31. 31.
    Ando, K., Ozaki, T., Yamamoto, H., Furuya, K., Hosoda, M., Hayashi, S., Fukuzawa, M., Nakagawara, A.: Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J. Biol. Chem. 279(24), 25549–25561 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Canshang Deng
    • 1
  • Qingfeng Chen
    • 1
    • 4
  • Zhixian Liu
    • 3
    • 4
  • Ruiqing Zheng
    • 2
  • Jin Liu
    • 2
  • Jianxin Wang
    • 2
  • Wei Lan
    • 1
  1. 1.School of Computer, Electronics and InformationGuangxi UniversityNanningPeople’s Republic of China
  2. 2.School of Information Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  3. 3.School of Electronic and Information EngineeringQinzhou UniversityQingzhouPeople’s Republic of China
  4. 4.State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi UniversityNanningPeople’s Republic of China

Personalised recommendations