Advertisement

Hierarchical Similarity Network Fusion for Discovering Cancer Subtypes

  • Shuhui Liu
  • Xuequn Shang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10847)

Abstract

Recent breakthroughs in biologic sequencing technologies have cost-effectively yielded diverse types of observations. Integrative analysis of multiple platform cancer data, which is capable of revealing intrinsic characteristics of a biological process, has become an attractive research route on cancer subtypes discovery. Most machine learning based methods need represent each input data in unified space, losing certain important features or resulting in various noises in some data types. Furthermore, many network based data integration methods treat each type data independently, leading to a lot of inconsistent conclusions. Subsequently, similarity network fusion (SNF) was developed to deal with such questions. However, Euclidean distance metrics employed in SNF suffers curse of dimensionality and thus gives rise to poor results.

To this end, we propose a new integrated method, dubbed hierarchical similarity network (HSNF), to learn a fused discriminating patient similarity network. HSNF randomly samples sub-features from different input data to construct multiple input similarity matrixes used as a basic of fusion so that diverse similarity matrixes are generated by multiple random sampling. Then we design a hierarchical fusion framework to make full use of the complementariness of diverse similarity networks from different feature modalities. Finally, based on the final fused similarity matrix, spectral clustering was used to discover cancer subtypes. Experimental results on five public cancer datasets manifest that HSNF can discover significantly different subtypes and can consistently outperform the-state-of-the-art in terms of silhouette, and p-value of survival analysis.

Keywords

Hierarchical similarity network fusion Multi-platform cancer data Cancer subtypes discovery Data integration 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers. This work has been supported by the National Natural Science Foundation of China (Grant No. 61332014 and 61772426).

References

  1. 1.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)CrossRefGoogle Scholar
  2. 2.
    Maulik, U., Mukhopadhyay, A., Chakraborty, D.: Gene-expression-based cancer subtypes prediction through feature selection and transductive SVM. IEEE Trans. Biomed. Eng. 60(4), 1111–1117 (2013)CrossRefGoogle Scholar
  3. 3.
    Kim, D., Lee, G., Sohn, K.-A., Bang, L., Kim, S.Y.: Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer. BMC Med. Genom. 10(1), 28 (2017)Google Scholar
  4. 4.
    Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–615 (2011)CrossRefGoogle Scholar
  5. 5.
    Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010)CrossRefGoogle Scholar
  6. 6.
    Wang, H., Zheng, H., Wang, J., Wang, C., Wu, F.-X.: Integrating omics data with a multiplex network-based approach for the identification of cancer subtypes. IEEE Trans. Nanobiosci. 15(4), 335–342 (2016)CrossRefGoogle Scholar
  7. 7.
    Parker, J.S., Mullins, M., Cheang, M.C., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, C., He, X., Hu, Z.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27(8), 1160–1167 (2009)CrossRefGoogle Scholar
  8. 8.
    Liang, M., Li, Z., Chen, T., Zeng, J.: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 12(4), 928–937 (2015)CrossRefGoogle Scholar
  9. 9.
    Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., Shi, B.: Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5(10), 2929 (2015)Google Scholar
  10. 10.
    List, M., Hauschild, A.-C., Tan, Q., Kruse, T.A., Baumbach, J., Batra, R.: Classification of breast cancer subtypes by combining gene expression and DNA methylation data. J. Integr. Bioinf. (JIB) 11(2), 1–14 (2014)CrossRefGoogle Scholar
  11. 11.
    Kim, S., Oesterreich, S., Kim, S., Park, Y., Tseng, G.C.: Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization. Biostatistics 18(1), 165–179 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, B., Mezlini, A.M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains, B., Goldenberg, A.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11(3), 333–337 (2014)CrossRefGoogle Scholar
  13. 13.
    Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012)CrossRefGoogle Scholar
  14. 14.
    Wang, B., Jiang, J., Wang, W., Zhou, Z.-H., Tu, Z.: Unsupervised metric fusion by cross diffusion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2997–3004. IEEE (2012)Google Scholar
  15. 15.
    Tao, H., Hou, C., Zhu, J., Yi, D.: Multi-view clustering with adaptively learned graph. In: Asian Conference on Machine Learning, pp. 113–128 (2017)Google Scholar
  16. 16.
    Shen, R., Olshen, A.B., Ladanyi, M.: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25(22), 2906–2912 (2009)CrossRefGoogle Scholar
  17. 17.
    Xu, T., Le, T.D., Liu, L., Wang, R., Sun, B., Li, J.: Identifying cancer subtypes from miRNA-TF-mRNA regulatory networks and expression data. PLoS One 11(4), e0152792 (2016)CrossRefGoogle Scholar
  18. 18.
    Speicher, N.K., Pfeifer, N.: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics 31(12), i268–i275 (2015)CrossRefGoogle Scholar
  19. 19.
    Le Van, T., van Leeuwen, M., Carolina Fierro, A., De Maeyer, D., Van den Eynden, J., Verbeke, L., De Raedt, L., Marchal, K., Nijssen, S.: Simultaneous discovery of cancer subtypes and subtype features by molecular data integration. Bioinformatics 32(17), i445–i454 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhang, Z., Zhai, Z., Li, L.: Uniform projection for multi-view learning. IEEE Trans. Pattern anal. Mach. Intell. (2016)Google Scholar
  21. 21.
    Law, M.T., Urtasun, R., Zemel, R.S.: Deep spectral clustering learning. In: International Conference on Machine Learning, pp. 1985–1994 (2017)Google Scholar
  22. 22.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, New York (2001)zbMATHGoogle Scholar
  23. 23.
    Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2(3), 18–22 (2002)Google Scholar
  24. 24.
    Kaufman, L., Rousseeuw, P.J.: Finding groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (2009)zbMATHGoogle Scholar
  25. 25.
    Xu, T., Le, T.D., Liu, L., Su, N., Wang, R., Sun, B., Colaprico, A., Bontempi, G., Li, J.: CancerSubtypes: an R/bioconductor package for molecular cancer subtype identification, validation, and visualization. Bioinformatics 33, 3131–3133 (2017)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Xiang, M., Yang, B.: Low-rank preserving embedding. Pattern Recogn. 70, 112–125 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations