Advertisement

Opportunistic Fog Computing for 5G Radio Access Networks: A Position Paper

  • Jofina Jijin
  • Boon-Chong SeetEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 245)

Abstract

Fog-based radio access networks (F-RAN) are posed to play a pivotal role in the much-anticipated 5th Generation (5G) cellular networks. The philosophy of F-RAN is to harness the distributed resources of collaborative edge devices to deliver localized RAN services to the end users. The current F-RAN is implemented mainly utilizing dedicated hardware and do not leverage on the available large number of distributed edge devices. This paper introduces the idea of opportunistic fog RAN (OF-RAN) which comprises of virtual fog access points (v-FAPs). The v-FAPs are formed opportunistically by one or more local edge devices also referred to as service nodes, such as WiFi access points, femtocell base stations and more resource rich end user devices under the coverage and management of the physical FAP, which can be dedicated fog server, fog-enabled remote radio heads (RRHs) or macrocell base stations. The proposed OF-RAN can be a low latency and high scalable solution for 5G cellular networks.

Keywords

Opportunistic fog computing 5G radio access network Virtual fog access points 

References

  1. 1.
    Tang, J., Tay, W.P., Quek, T.Q., Liang, B.: System cost minimization in cloud RAN with limited fronthaul capacity. IEEE Trans. Wirel. Commun. 16, 3371–3384 (2017)CrossRefGoogle Scholar
  2. 2.
    Peng, M., Sun, Y., Li, X., Mao, Z., Wang, C.: Recent advances in cloud radio access network system architecture, key techniques, and issues. IEEE Commun. Surv. Tutor. 18(3), 2282–2308 (2016)CrossRefGoogle Scholar
  3. 3.
    Checko, A., Christiansen, H., Yan, Y., Scolari, L., Kardaras, G., Berger, M., Dittmann, L.: Cloud RAN for mobile networks - a technology overview. IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015)CrossRefGoogle Scholar
  4. 4.
    Peng, M., Yan, S., Zhang, K., Wang, C.: Fog computing based radio access networks: issues and challenges. IEEE Netw. Mag. 30(4), 46–53 (2016)CrossRefGoogle Scholar
  5. 5.
    Shih, Y., et al.: Enabling low-latency applications in fog radio access networks. IEEE Netw. 31(1), 52–58 (2017)CrossRefGoogle Scholar
  6. 6.
    Hung, S., et al.: Architecture harmonization between cloud radio access networks and fog networks. IEEE Access 3, 3019–3034 (2015)CrossRefGoogle Scholar
  7. 7.
    Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing principles architecture and applications, Chap. 4. In: Buyya, R., Dastjerdi, A.V. (eds.) Internet of Things: Principles and Paradigms. Elsevier, Massachusetts (2016)CrossRefGoogle Scholar
  8. 8.
    Lilien, L., Gupta, A., Kamal, Z., Yang, Z.: Opportunistic resource utilization networks—a new paradigm for specialized ad hoc networks. Comput. Electr. Eng. 36(2), 328–340 (2010)CrossRefGoogle Scholar
  9. 9.
    Wubben, D., Rost, P., Barlett, J., Lalam, M., Savin, V., Gorgogolione, M., Dekorsy, A., Fettweis, G.: Benefits and impact of cloud computing on 5G signal processing. IEEE Sig. Process. Mag. 31(6), 35–44 (2014)CrossRefGoogle Scholar
  10. 10.
    Chang, C.-Y., Schiavi, R., Nikaein, N., Spyropoulos, T., Bonnet, C.: Impact of packetization and functional split on C-RAN fronthaul performance. In: Proceedings of IEEE International Conference on Communications, ICC, Kuala Lumpur, Malaysia, May 2016Google Scholar
  11. 11.
    Vu, T.X., Nguyen, H.D., Quek, T.Q.: Adaptive compression and joint detection for fronthaul uplinks in cloud radio access networks. IEEE Trans. Commun. 63(11), 4565–4575 (2015)CrossRefGoogle Scholar
  12. 12.
    Liu, L., Bi, S., Zhang, R.: Joint power control and fronthaul rate allocation for throughput maximization in OFDMA-based cloud radio access network. IEEE Trans. Commun. 63(11), 4097–4110 (2015)CrossRefGoogle Scholar
  13. 13.
    Park, S.-H., Simeone, O., Shitz, S.S.: Joint optimization of cloud and edge processing for fog radio access networks. IEEE Trans. Wirel. Commun. 15(11), 7621–7632 (2016)CrossRefGoogle Scholar
  14. 14.
    Stephen, R.G., Zhang, R.: Joint millimeter-wave fronthaul and OFDMA resource allocation in ultra-dense CRAN. IEEE Trans. Commun. 65(3), 1411–1423 (2017)CrossRefGoogle Scholar
  15. 15.
    Radwan, A., Huq, K.M.S., Mumtaz, S., Tsang, K.-F., Rodriguez, J.: Low-cost on-demand C-RAN based mobile small-cells. IEEE Access 4, 2331–2339 (2016)CrossRefGoogle Scholar
  16. 16.
    Yan, S., Peng, M., Abana, M.A., Wang, W.: An evolutionary game for user access mode selection in fog radio access networks. IEEE Access 5, 2200–2210 (2017)CrossRefGoogle Scholar
  17. 17.
    Peng, M., Li, Y., Quek, T.Q., Wang, C.: Device-to-device underlaid cellular networks under Rician fading channels. IEEE Trans. Wirel. Commun. 13(8), 4247–4259 (2014)CrossRefGoogle Scholar
  18. 18.
    Chiu, T.-C., Chung, W.-H., Pang, A.-C., Yu, Y.-J., Yen, P.-H.: Ultra-low latency service provision in 5G fog-radio access networks. In: Proceedings of IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC, Valencia, Spain, September 2016Google Scholar
  19. 19.
    Tanzil, S.S., Gharehshiran, O.N., Krishnamurthy, V.: Femto-cloud formation: a coalitional game-theoretic approach. In: Proceedings of IEEE Global Communications Conference, GLOBECOM, San Diego, CA, USA, December 2015Google Scholar
  20. 20.
    Vondra, M., Becvar, Z.: QoS-ensuring distribution of computation load among cloud-enabled small cells. In: Proceedings of IEEE 3rd International Conference on Cloud Networking, CloudNet, Luxembourg, October 2014Google Scholar
  21. 21.
    Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applications in edge computing environments. IEEE Access 5, 2514–2533 (2017)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations