Interpretation of Imaging Data from Spectralis OCT

  • Atilla Bayer


The capabilities of spectral-domain and swept-source optical coherence tomography (OCT) systems are evolving rapidly with 3D imaging, reproducible registration, and advanced segmentation algorithms of the optic nerve head, retinal nerve fiber layer and macular region. These systems have established themselves as the predominant imaging modality for management of glaucoma, providing high-resolution visualization of ocular microstructures and objective quantification of tissue thickness and change over time. Spectralis OCT (Heidelberg Engineering Inc., Heidelberg, Germany) is one of the most commonly used platforms. This chapter provides an update on the features and functions of Spectralis OCT device and the practical tips for interpretation of the most commonly used reports.


Spectralis OCT OCT glaucoma OCT interpretation 


  1. 1.
    Strouthidis NG, Grimm J, Williams GA, Cull GA, Wilson DJ, Burgoyne CF. A comparison of optic nerve head morphology viewed by spectral domain optical coherence tomography and by serial histology. Invest Ophthalmol Vis Sci. 2010;51:1464–74.CrossRefGoogle Scholar
  2. 2.
    Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152:87–95e81.CrossRefGoogle Scholar
  3. 3.
    Reis AS, Sharpe GP, Yang H, Nicolela MT, Burgoyne CF, Chauhan BC. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology. 2012a;119:738–47.CrossRefGoogle Scholar
  4. 4.
    Strouthidis NG, Yang H, Reynaud JF, Grimm JL, Gardiner SK, Fortune B, Burgoyne CF. Comparison of clinical and spectral domain optical coherence tomography optic disc margin anatomy. Invest Ophthalmol Vis Sci. 2009;50:4709–18.CrossRefGoogle Scholar
  5. 5.
    He L, Ren R, Yang H, Hardin C, Reyes L, Reynaud J, Gardiner SK, Fortune B, Demirel S, Burgoyne CF. Anatomic vs acquired image frame discordance in spectral domain optical coherence tomography minimum rim measurements. PLoS One. 2014;9:e92225. [PubMed: 24643069]CrossRefGoogle Scholar
  6. 6.
    Valverde-Megías A, Martinez-de-la-Casa JM, Serrador-García M, Larrosa JM, García-Feijoó J. Clinical relevance of foveal location on retinal nerve fiber layer thickness using the new FoDi software in spectralis optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:5771–6.CrossRefGoogle Scholar
  7. 7.
    Jansonius NM, Nevalainen J, Selig B, Zangwill LM, Sample PA, et al. A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vis Res. 2009;49:2157–63.CrossRefGoogle Scholar
  8. 8.
    Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.CrossRefGoogle Scholar
  9. 9.
    Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52:1206–19.CrossRefGoogle Scholar
  10. 10.
    Chauhan BC, Burgoyne FC. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol. 2013;156:218–27.CrossRefGoogle Scholar
  11. 11.
    Reis AS, O'Leary N, Yang H, Sharpe GP, Nicolela MT, Burgoyne CF, Chauhan BC. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci. 2012b;53:1852–60.CrossRefGoogle Scholar
  12. 12.
    Reis AS, O’Leary N, Stanfield MJ, Shuba LM, Nicolela MT, Chauhan BC. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest Ophthalmol Vis Sci. 2012d;53:5819–26.CrossRefGoogle Scholar
  13. 13.
    Chen TC. Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis). Trans Am Ophthalmol Soc. 2009;107:254–81.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Povazay B, Hofer B, Hermann B, et al. Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis. J Biomed Opt. 2007;12:041204.CrossRefGoogle Scholar
  15. 15.
    Chauhan BC, O'Leary N, Almobarak FA, Reis AS, Yang H, Sharpe GP, Hutchison DM, Nicolela MT, Burgoyne CF. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology. 2013;120:535–43.CrossRefGoogle Scholar
  16. 16.
    Danthurebandara VM, Sharpe GP, Hutchinson DM, Dennis J, Nicolela MT, McKendrick AM, Turpin A, Chauhan BC. Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. Invest Ophthalmol Vis Sci. 2011;56:98–105.CrossRefGoogle Scholar
  17. 17.
    Nakano N, Hangai M, Nakanishi H, Mori S, Nukada M, Kotera Y, Ikeda HO, Nakamura H, Nonaka A, Yoshimura N. Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography. Ophthalmology. 2011;118:2414–26.CrossRefGoogle Scholar
  18. 18.
    Yamada H, Hangai M, Nakano N, Takayama K, Kimura Y, Miyake M, Akagi T, Ikeda HO, Noma H, Yoshimura N. Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis. Am J Ophthalmol. 2014;158:1318–29.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Atilla Bayer
    • 1
  1. 1.Department of GlaucomaDünyagöz Eye HospitalAnkaraTurkey

Personalised recommendations