Advertisement

Optical Coherence Tomography: Basics and Technical Aspects

  • Ahmet Akman
Chapter

Abstract

Optical Coherence Tomography (OCT) is a diagnostic imaging technique based on optical reflectometry, which is able to acquire high resolution in vivo images from transparent or semi-transparent tissues with a penetration depth of 2–4 mm and a resolution similar to a low power microscope. It is a non-contact, non-invasive imaging technique used to obtain high-resolution cross-sectional images of the ocular structures. OCT imaging of the retina or optic nerve head resembles a cross-sectional biopsy of the tissues of interest. Instead of viewing a stained section under a microscope, the clinician is presented with a ‘false-color’ view of the tissue at micron-level resolution. This chapter summarizes the basics and technical principles of the OCT systems including the time-domain, spectral-domain and swept-source OCT systems.

Keywords

Optical coherence tomography OCT glaucoma OCT basics Time domain Spectral domain Fourier domain Swept source 

References

  1. 1.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254(5035):1178–81.CrossRefGoogle Scholar
  2. 2.
    Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography-principles and applications. Rep Prog Phys. 2003;66(2):239.CrossRefGoogle Scholar
  3. 3.
    Drexler W, Fujimoto JG. Introduction to optical coherence tomography. In: Drexler W, Fujimoto JG, editors. Optical coherence tomography: technology and applications: Springer; 2008. p. 1–40.Google Scholar
  4. 4.
    Schuman JS, Hee MR, Arya AV, Pedut- Kloizman T, Puliafito CA, Fujimoto JG, Swanson EA. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol. 1995;6:89–95.CrossRefGoogle Scholar
  5. 5.
    Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H. In vivo optical coherence tomography. Am J Ophthalmol. 1993;116:113–4.CrossRefGoogle Scholar
  6. 6.
    Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA Fujimoto JG. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993;18:1864–6.CrossRefGoogle Scholar
  7. 7.
    Leitgeb R, Wojtkowski M, Kowalczyk A, Hitzenberger CK, Sticker M, Fercher AF. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt Lett. 2000;25:820–2.CrossRefGoogle Scholar
  8. 8.
    de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28:2067–9.CrossRefGoogle Scholar
  9. 9.
    Choma MA, Hsu K, Izatt JA. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J Biomed Opt. 2005;10:44009.CrossRefGoogle Scholar
  10. 10.
    Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11:2183–9.CrossRefGoogle Scholar
  11. 11.
    Yun SH, Tearney G, de Boer J, Bouma B. Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. Opt Express. 2004;12:5614–24.CrossRefGoogle Scholar
  12. 12.
    Zhang J, Rao B, Chen Z. Swept source based fourier domain functional optical coherence tomography. Conf Proc IEEE Eng Med Biol Soc. 2005;7:7230–3.PubMedGoogle Scholar
  13. 13.
    Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, Zinkernagel MS. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PLoS One. 2017;12(5):e0177059.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ahmet Akman
    • 1
  1. 1.Department of Ophthalmology, School of MedicineBaşkent UniversityAnkaraTurkey

Personalised recommendations