Advertisement

Formalism for QFT

  • Stefan Hollands
  • Ko Sanders
Chapter
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 34)

Abstract

This chapter presents the most important notions and examples of the theory of operator algebras. These are then used to formulate the basic principles of quantum field theory and some examples of algebraic QFTs.

References

  1. 1.
    R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras (Academic Press, New York, I 1983, II 1986)Google Scholar
  2. 2.
    O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics (Springer, I 1987, II 1997)Google Scholar
  3. 3.
    R.T. Powers, E. Størmer, Free states of the canonical anticommutation relations. Commun. Math. Phys. 16, 1–33 (1970)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    H. Araki, Relative entropy for states of von Neumann algebras. Publ. RIMS Kyoto Univ. 11, 809–833 (1976)CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Araki, Relative entropy for states of von Neumann algebras II. Publ. RIMS Kyoto Univ. 13, 173–192 (1977)CrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Florig, S.J. Summers, On the statistical independence of algebras of observables. J. Math. Phys. 38, 1318 (1997)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Doplicher, R. Longo, Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493 (1984)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Buchholz, E.H. Wichmann, Causal independence and the energy level density of states in local quantum field theory. Commun. Math. Phys. 106, 321 (1986)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    E. Binz, R. Honegger, A. Rieckers, Construction and uniqueness of the \(C^*\)-Weyl algebra over a general pre-symplectic space. J. Math. Phys. 45, 2885–2907 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    F. Kärsten, Report MATH, 89–06 (Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, Berlin, 1989)Google Scholar
  11. 11.
    R.M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics (Chicago University Press, Chicago, 1994)zbMATHGoogle Scholar
  12. 12.
    J. Manuceau, A. Verbeure, Quasi-free states of the C.C.R.-algebra and Bogoliubov transformations. Commun. Math. Phys. 9, 293–302 (1968)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    H. Araki, S. Yamagami, On quasi-equivalence of quasifree states of the canonical commutation relations. Publ. RIMS Kyoto Univ. 18, 283–338 (1982)zbMATHMathSciNetGoogle Scholar
  14. 14.
    P. Leylands, J.E. Roberts, D. Testard, Duality for Quantum Free Fields (Preprint CNRS, Marseille, 1978)Google Scholar
  15. 15.
    H. Araki, On quasifree states of the CAR and Bogoliubov automorphisms. Publ. RIMS Kyoto Univ. 6, 385–442 (1970)CrossRefMathSciNetGoogle Scholar
  16. 16.
    J. Cuntz, Simple C*-algebras generated by isometries. Commun. Math. Phys. 57, 173–185 (1977)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    S. Hollands, R.M. Wald, Quantum fields in curved spacetime. Phys. Rept. 574, 1 (2015)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    H. Araki, Mathematical Theory of Quantum Fields (Oxford Science Publications, 1993)Google Scholar
  19. 19.
    H. Reeh, S. Schlieder, Bemerkungen zur Unitäräquivalenz von lorentzinvarianten Feldern. Nuovo Cimento 22, 1051–1068 (1961)CrossRefGoogle Scholar
  20. 20.
    R. Haag, J.A. Swieca, When does a quantum field theory describe particles? Commun. Math. Phys. 1, 308–320 (1965)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Pietsch, Nuclear Locally Convex Spaces (Springer, Berlin, 1972)CrossRefGoogle Scholar
  22. 22.
    C.J. Fewster, I. Ojima, M. Porrmann, p-nuclearity in a new perspective. Lett. Math. Phys. 73, 1–15 (2005)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    D. Buchholz, K. Fredenhagen, C. D’Antoni, The universal structure of local algebras. Commun. Math. Phys. 111, 123 (1987)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    C.J. Fewster, R. Verch, The necessity of the Hadamard condition. Class. Quant. Grav. 30, 235027 (2013)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    D. Buchholz, C. D’Antoni, R. Longo, Nuclear maps and modular structures. 1. General properties. J. Funct. Anal. 88, 223 (1990)CrossRefMathSciNetGoogle Scholar
  26. 26.
    G. Lechner, K. Sanders, Modular nuclearity: a generally covariant perspective. Axioms 5, 5 (2016)CrossRefGoogle Scholar
  27. 27.
    D. Buchholz, P. Jacobi, On the nuclearity condition for massless fields. Lett. Math. Phys. 13, 313 (1987)ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    C. Bär, N. Ginoux, F. Pfäffle, Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures in Mathematics and Physics (European Mathematical Society Publishing House, Germany, 2007)CrossRefGoogle Scholar
  29. 29.
    R. Seeley, Complex powers of elliptic operators. Proc. Symp. Pure Appl. Math. AMS 10, 288–307 (1967)CrossRefMathSciNetGoogle Scholar
  30. 30.
    B.S. Kay, Linear spin-zero quantum fields in external gravitational and scalar fields I. A one particle structure for the stationary case. Commun. Math. Phys. 62, 55–70 (1978)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics II (Academic Press, 1975)Google Scholar
  32. 32.
    C. D’Antoni, S. Hollands, Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved space-time. Commun. Math. Phys. 261, 133 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    J. Figueroa-O’Farrill, Majorana Spinors, http://www.maths.ed.ac.uk/jmf/Teaching/Lectures/Majorana.pdf
  34. 34.
    B. Schroer, H.W. Wiesbrock, Modular constructions of quantum field theories with interactions. Rev. Math. Phys. 12, 301 (2000)CrossRefMathSciNetGoogle Scholar
  35. 35.
    G. Lechner, Construction of quantum field theories with factorizing s-matrices. Commun. Math. Phys. 277, 821 (2008)ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    G. Lechner, On the existence of local observables in theories with a factorizing S-matrix. J. Phys. A 38, 3045–3056 (2005)ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    D. Buchholz, G. Lechner, Modular nuclearity and localization. Ann. Henri Poincaré 5, 1065 (2004)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    R. Haag, Local Quantum Physics: Fields, Particles, Algebras (Springer, Berlin, 1992)CrossRefGoogle Scholar
  39. 39.
    E. Abdalla, C. Abdalla, K.D. Rothe, Non-perturbative Methods in 2-Dimensional Quantum Field Theory (World Scientific, New Jersey, 1991)CrossRefGoogle Scholar
  40. 40.
    S. Alazzawi, G. Lechner, Inverse Scattering and Locality in Integrable Quantum Field Theories, arXiv:1608.02359 [math-ph]
  41. 41.
    K. Fredenhagen, J. Hertel, Local algebras of observables and point-like localized fields. Commun. Math. Phys. 80, 555 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    H. Bostelmann, Phase space properties and the short distance structure in quantum field theory. J. Math. Phys. 4, 052301 (2005)ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    V. Morinelli, Y. Tanimoto, M. Weiner, Conformal Covariance and the Split Property, Commun. Math. Phys. 357(1), 379-406 (2018)ADSCrossRefMathSciNetGoogle Scholar
  44. 44.
    Y. Kawahigashi, Conformal field theory, tensor categories and operator algebras. J. Phys. A 48 (30), 303001, 57 (2015)CrossRefMathSciNetGoogle Scholar
  45. 45.
    K.-H. Rehren, Algebraic conformal quantum field theory in perspective, in Advances in Algebraic Quantum Field Theory (Springer, Switzerland, 2015), pp. 331–364. Math. Phys. StudCrossRefGoogle Scholar
  46. 46.
    Y. Kawahigashi, R. Longo, Classification of local conformal nets: case c < 1. Ann. Math. 160, 493 (2004)CrossRefMathSciNetGoogle Scholar
  47. 47.
    P. DiFrancesco, P. Mathieu, D. Senechal, Conformal Field Theory (Springer, New York, 1997)CrossRefGoogle Scholar
  48. 48.
    C.J. Fewster, S. Hollands, Quantum energy inequalities in two-dimensional conformal field theory. Rev. Math. Phys. 17, 577 (2005)CrossRefMathSciNetGoogle Scholar
  49. 49.
    V.T. Laredo, Integrating unitary representations of infinite-dimensional Lie groups. J. Funct. Anal. 161, 478–508 (1999)CrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of LeipzigLeipzigGermany
  2. 2.School of Mathematical SciencesDublin City UniversityDublinIreland

Personalised recommendations