Fog Computing pp 249-266 | Cite as

Data and Computation Movement in Fog Environments: The DITAS Approach

  • Pierluigi PlebaniEmail author
  • David Garcia-Perez
  • Maya Anderson
  • David Bermbach
  • Cinzia Cappiello
  • Ronen I. Kat
  • Achilleas Marinakis
  • Vrettos Moulos
  • Frank Pallas
  • Stefan Tai
  • Monica Vitali


Data-intensive applications are becoming very important in several domains including e-health, government 2.0, smart cities, and industry 4.0. In fact, the significant increase of sensor deployment in the Internet of things (IoT) environments, in conjunction with the huge amount of data that are generated by the smart and intelligent devices such as smartphones, requires proper data management. The goal of this chapter is to focus on how to improve data management when data are produced and consumed in a Fog Computing environment, where both resources at the edge of the network (e.g., sensors and mobile devices) and resources in the cloud (e.g., virtual machines) are involved and need to operate seamlessly together. Based on the approach proposed in the European DITAS project, data and computation movement between the edge and the cloud are studied, to create a balance between such characteristics as latency and response time (when data are stored in edge-located resources) and scalability and reliability in case of data residing in the cloud. In this contribution, to enable data and computation movement, an approach based on the principles of Service-Oriented Computing applied to a Fog environment has been adopted.


Fog computing IoT Data-intensive application DITAS Service-Oriented Computing Data movement Computation movement Containerized applications Virtual data container 


  1. 1.
    Szalay A, Gray J (2020) Computing: science in an exponential world. Nature 440:413–414CrossRefGoogle Scholar
  2. 2.
    Bell G, Hey T, Szalay A (2009) Beyond the data deluge. Science 323(5919):1297–1298CrossRefGoogle Scholar
  3. 3.
    Turner V, Reinsel D, Gatz JF, Minton S (2014) The digital universe of opportunities: rich data and the increasing value of the internet of things. IDC White PaperGoogle Scholar
  4. 4.
    Plattner H, Zeier A (2012) In-memory management. Springer, VerlagGoogle Scholar
  5. 5.
    Chen CLP, Zhang C (2014) Data-intensive applications, challenges, techniques and technologies: a survey on. Inf Sci 275:314–347CrossRefGoogle Scholar
  6. 6.
    Apache Software Foundation (2008)
  7. 7.
    Marz N, Warren W (2013) Principles and best practices of scalable realtime data systems. Manning Publications, New YorkGoogle Scholar
  8. 8.
    OpenFog Consortium Architecture Working Group (2016) OpenFog Architecture Overview. Accessed 31 Jan 2018
  9. 9.
    Shi W, Dustdar S (2016) The promise of edge computing. Computer 49(5):78–81CrossRefGoogle Scholar
  10. 10.
    Bermbach D, Pallas F, Garcıa Pérez D, Plebani P, Anderson M, Kat R, Tai S (2017) A research perspective on Fog Computing. ICSOC-ISYCC Workshop, MalagaGoogle Scholar
  11. 11.
    ATOS Spain (2018)
  12. 12.
    Sandkuhl K (2008) Information logistics in networked organizations: selected concepts and applications. Springer, HeidelbergGoogle Scholar
  13. 13.
    MacKenzie CM, Laskey K, McCabe F, Brown PF, Metz R (2006) Reference model for service oriented architecture 1.0. Tech rep, OASISGoogle Scholar
  14. 14.
    MongoDB Inc (2009)
  15. 15.
    Apache Software Foundation (2008)
  16. 16.
    Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the 1st edn of the MCC workshop on 
mobile cloud computing, pp 13–16Google Scholar
  17. 17.
    Plebani P, Garcia-Perez D, Anderson M, Bermbach D, Cappiello C, Kat RI, Pallas F, Pernici B, Tai S, Vitali M, (2017) Information logistics and fog computing: the ditas approach. In: Proceedings of the forum and doctoral consortium papers presented at CAISE 2017, Essen, Germany, pp 129–136. CEUR vol 1848Google Scholar
  18. 18.
  19. 19.
    Fielding R, Taylor R (2002) Principled design of the modern web architecture. ACM Trans Internet Technology, 2(2), pp 115–150CrossRefGoogle Scholar
  20. 20.
    Cappiello C, Pernici B, Plebani P, Vitali M (2017) Utility-driven data management for data-intensive applications in fog environments. In: Advances in Conceptual Modeling, ER Workshops, pp 216–226Google Scholar
  21. 21.
    Kjubernetes (2018)
  22. 22.
    Docker (2018)
  23. 23.
    Michelberger B, Andris RJ, Girit H, Mutschler B (2013) A literature survey on information logistics. In: Proceedings of 16th international conference of business information systems, BIS 2013, Poznan, Poland, June 19–21, Springer International Publishing, HeidelbergCrossRefGoogle Scholar
  24. 24.
    D’Andria F, Field D, Kopaneli A, Kousiouris G, Garcia-Perez D, Pernici B, Plebani P (2015) Data movement in the internet of things domain. In: Service oriented and cloud computing: 4th european conference, ESOCC 2015, Taormina, Italy, 15–17 Sep 2015, Springer, SwitzerlandCrossRefGoogle Scholar
  25. 25.
    Cappiello C, Hinostroza A, Pernici B, Sami M, Henis E, Kat RI, Meth KZ, Mura M (2011) ADSC: Application-driven storage control for energy efficiency. ICT-GLOW 2011, pp 165–179Google Scholar
  26. 26.
    Logothetis D, Olston C, Reed B, Webb KC, Yocum K (2010) Stateful bulk processing for incremental analytics. In: Proceedings of the 1st ACM symposium on Cloud computing (SoCC’10), ACM, New York, USA, pp 51–62Google Scholar
  27. 27.
    Leyshock P, Maier D, Tufte K, (2014) Minimizing data movement through query transformation. In: Proceedings of IEEE international conference on (Big Data), 27–30 Oct 2014, pp 311–316Google Scholar
  28. 28.
    Lim H, Herodotou H, Babu S (2012) Stubby: a transformation-based optimizer for MapReduce workflows. Proc VLDB Endowment 5(11):1196–1207CrossRefGoogle Scholar
  29. 29.
    Srisooksai T, Keamarungsi K, Lamsrichan P, Araki K (2012) Practical data compression in wireless sensor networks: a survey. J Netw Comput Appl 35(1):37–59CrossRefGoogle Scholar
  30. 30.
    Lu P, Zhang L, Liu X, Yao J, Zhu Z (2015) Highly efficient data migration and backup for applications in elastic optical inter-data-center networks. IEEE Netw 29(5):36–42CrossRefGoogle Scholar
  31. 31.
    Ho TTN, Pernici B (2015) A data-value-driven adaptation framework for energy efficiency for data intensive applications in clouds. In: Proceedings of IEEE conference on technologies for sustainability (SusTech), pp 47–52Google Scholar
  32. 32.
    Peng X, Pernici B (2016) Correlation-model-based reduction of monitoring data in data centers. In: Proceedings of smart cities and green ICT systems (SMARTGREENS), pp 135–153Google Scholar
  33. 33.
    Davis JR, Eve R (2011) Data virtualization: going beyond traditional data integration to achieve business agility. Nine Five One PressGoogle Scholar
  34. 34.
    Mousa AH, Shiratuddin N, Abu Bakar MS (2015) RGMDV: An approach to requirements gathering and the management of data virtualization projects. In: Proceedings of the 2nd innovation and analytics conference & exhibition (IACE 2015), vol 1691, AIP Publishing, New YorkGoogle Scholar
  35. 35.
    Hopkins B, Cullen A, Gilpin M, Evelson B, Leganza G, Cahill M (2011) Data virtualization reaches the critical mass. Forrester ReportGoogle Scholar
  36. 36.
    Vaughan-Nichols SJ (2006) New approach to virtualization is a lightweight. Computer 39(11):12–14CrossRefGoogle Scholar
  37. 37.
    Sahoo SK, Agrawal G (2004) Supporting XML based high-level abstractions on HDF5 datasets: a case study in automatic data virtualization. Languages and Compilers for High Performance Computing. Springer, Heidelberg, pp 299–318Google Scholar
  38. 38.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pierluigi Plebani
    • 1
    Email author
  • David Garcia-Perez
    • 2
  • Maya Anderson
    • 3
  • David Bermbach
    • 4
  • Cinzia Cappiello
    • 1
  • Ronen I. Kat
    • 3
  • Achilleas Marinakis
    • 5
  • Vrettos Moulos
    • 5
  • Frank Pallas
    • 4
  • Stefan Tai
    • 3
  • Monica Vitali
    • 1
  1. 1.Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly
  2. 2.Atos Spain SABarcelonaSpain
  3. 3.IBM ResearchHaifa University CampusHaifaIsrael
  4. 4.IS Eng ResearchTU BerlinBerlinGermany
  5. 5.NTUA—National Techinical University of AthensZografou Campus, AthensGreece

Personalised recommendations