Artificial Intelligence in Medical Imaging pp 107-117 | Cite as
Enterprise Imaging
Chapter
First Online:
Abstract
Since several years, there is a general trend from departmental PACS solutions to integrated, enterprise-wide image management solution. Formerly called multimedia archives, it is now known as enterprise imaging platform. Several aspects, like governance, interfaces, access and privacy rules, etc., are relevant for a successful implementation of an enterprise imaging platform. Such data repositories could be perfect sources for the development, and clinical use of AI applications assumed that the quality of information from the different image sources including metadata, annotations or reports are reliable.
Keywords
Enterprise imaging PACS DICOM IHE Artificial intelligenceReferences
- 1.Hartman D, Pantanowitz L, McHugh J, Piccoli A, OLeary M, Lauro G. Enterprise implementation of digital pathology: feasibility, challenges, and opportunities. J Digit Imaging. 2017;30(5):555–60.CrossRefGoogle Scholar
- 2.Roth CJ, Lannum LM, Persons KR. A foundation for enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):530–8.CrossRefGoogle Scholar
- 3.Roth CJ, Lannum LM, Joseph CL. Enterprise imaging governance: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):539–46.CrossRefGoogle Scholar
- 4.Aryanto KYE, Wetering R, Broekema A, Ooijen PA, Oudkerk M. Impact of cross-enterprise data sharing on portable media with decentralised upload of DICOM data into PACS. Insights Imaging. 2014;5(1):157–64.CrossRefGoogle Scholar
- 5.Towbin AJ, Roth CJ, Bronkalla M, Cram D. Workflow challenges of enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):574–82.CrossRefGoogle Scholar
- 6.Cram D, Roth CJ, Towbin AJ. Orders- versus encounters-based image capture: implications pre- and post-procedure workflow, technical and build capabilities, resulting, analytics and revenue capture: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):559–66.CrossRefGoogle Scholar
- 7.DICOM. Standard. Available from: https://www.dicomstandard.org/current/.
- 8.Bhargavan-Chatfield M, Morin RL. The ACR computed tomography dose index registry: the 5 million examination update. J Am Coll Radiol. 2013;10(12):980–3.CrossRefGoogle Scholar
- 9.Roth CJ, Lannum LM, Dennison DK, Towbin AJ. The current state and path forward for enterprise image viewing: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):567–73.CrossRefGoogle Scholar
- 10.Li S, Liu Y, Yuan Y, Li J, Wei L, Wang Y, et al. Implementation of enterprise imaging strategy at a Chinese Tertiary Hospital. J Digit Imaging. 2018;31:534–42.CrossRefGoogle Scholar
- 11.Clunie DA, Dennison DK, Cram D, Persons KR, Bronkalla MD, Primo HR. Technical challenges of enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):583–614.CrossRefGoogle Scholar
- 12.Vreeland A, Persons KR, Primo H, Bishop M, Garriott KM, Doyle MK, et al. Considerations for exchanging and sharing medical images for improved collaboration and patient care: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):547–58.CrossRefGoogle Scholar
- 13.Schwind F, Münch H, Schröter A, Brandner R, Kutscha U, Brandner A, et al. Long-term experience with setup and implementation of an IHE-based image management and distribution system in intersectoral clinical routine. Int J Comput Assist Radiol Surg. 2018; https://doi.org/10.1007/s11548-018-1819-2.CrossRefGoogle Scholar
- 14.Liu S, Zhou B, Xie G, Mei J, Liu H, Liu C, et al. Beyond regional health information exchange in China: a practical and industrial-strength approach. AMIA Ann Symp Proc. 2011;2011:824–33.Google Scholar
- 15.Balthazar P, Harri P, Prater A, Safdar NM. Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. J Am Coll Radiol. 2018;15(3, Part B):580–6.CrossRefGoogle Scholar
- 16.European Society of R. Usability of irreversible image compression in radiological imaging. A position paper by the European Society of Radiology (ESR). Insights Imaging. 2011;2(2):103–15.CrossRefGoogle Scholar
- 17.Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.CrossRefGoogle Scholar
- 18.Kruskal JB, Berkowitz S, Geis JR, Kim W, Nagy P, Dreyer K. Big data and machine learning—strategies for driving this bus: a summary of the 2016 intersociety summer conference. J Am Coll Radiol. 2017;14(6):811–7.CrossRefGoogle Scholar
- 19.Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, et al. Canadian Association of Radiologists white paper on artificial intelligence in radiology. Can Assoc Radiol J. 2018;69(2):120–35.CrossRefGoogle Scholar
- 20.Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018;288(2):318–28.CrossRefGoogle Scholar
- 21.Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611–29.CrossRefGoogle Scholar
- 22.Channin DS, Mongkolwat P, Kleper V, Rubin DL. The annotation and image mark-up project. Radiology. 2009;253(3):590–2.CrossRefGoogle Scholar
- 23.Obuchowski NA, Reeves AP, Huang EP, et al. Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons. Stat Methods Med Res. 2014;24:68–106.CrossRefGoogle Scholar
- 24.Pinto Dos Santos D, Klos G, Kloeckner R, Oberle R, Dueber C, Mildenberger P. Development of an IHE MRRT-compliant open-source web-based reporting platform. Eur Radiol. 2017;27(1):424–30.CrossRefGoogle Scholar
- 25.Charles E, Kahn J. From images to actions: opportunities for artificial intelligence in radiology. Radiology. 2017;285(3):719–20.CrossRefGoogle Scholar
- 26.Dreyer KJ, Dreyer JL. Imaging informatics: lead, follow, or become irrelevant. J Am Coll Radiol. 2013;10(6):394–6.CrossRefGoogle Scholar
- 27.Haarbrandt B, Schreiweis B, Rey S, Sax U, Scheithauer S, Rienhoff O, et al. HiGHmed – an open platform approach to enhance care and research across institutional boundaries. Methods Inf Med. 2018;57(S 01):e66–81.CrossRefGoogle Scholar
- 28.Studzinski J. Bestimmung des Reifegrades der IT-gestützten klinischen Bildgebung und Befundung mit dem Digital Imaging Adoption Model (Evaluating the maturity of IT-supported clinical imaging and diagnosis using the Digital Imaging Adoption Model: are your clinical imaging processes ready for the digital era?). Der Radiologe. 2017;57(6):466–469.CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019