Advertisement

Neurological Diseases

  • Nathaniel SwinburneEmail author
  • Andrei Holodny
Chapter

Abstract

Neuroimaging represents an intriguing target for AI applications for several reasons including the high morbidity and mortality associated with neurological diseases. Technical challenges remain due to the volumetric and multiparametric nature of neuroradiological imaging; however advances in GPU power and development of novel deep learning architectures continue the field’s advancement. AI applications to neuroimaging have shown success at handling a range of tasks involving all stages from an imaging study’s acquisition through its interpretation. Preprocessing steps commonly performed before utilization in AI applications include skull stripping, normalization, and coregistration. AI has demonstrated the ability to perform study protocoling; shorten image acquisition times of conventional, DTI, and ASL MRI; and generate synthetic images using a different imaging modality. The use of AI to perform tissue and lesion (e.g., tumor and MS plaque) segmentation is an area of active research. Newer applications have shown success at identification and quantification of specific disease processes including infarcts, tumors, and intracranial hemorrhage, as well as more robust approaches that surveil for multiple acute neurological diseases.

Keywords

Neuroimaging Neuroradiology Brain MRI CT Stroke Tumor Intracranial hemorrhage Machine learning Segmentation 

References

  1. 1.
    Le Bihan D. Diffusion MRI: what water tells us about the brain. EMBO Mol Med. 2014;6(5):569–73.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Medical image computing and computer-assisted intervention – MICCAI 2013 [Internet]. Berlin: Springer; 2013. p. 246–53. (Lecture Notes in Computer Science). Available from: http://link.springer.com/chapter/10.1007/978-3-642-40763-5_31. Accessed 30 May 2018.CrossRefGoogle Scholar
  3. 3.
    Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61–78.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Acosta-Cabronero J, Williams GB, Pereira JMS, Pengas G, Nestor PJ. The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry. NeuroImage. 2008;39(4):1654–65.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sadananthan SA, Zheng W, Chee MWL, Zagorodnov V. Skull stripping using graph cuts. NeuroImage. 2010;49(1):225–39.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Popescu V, Battaglini M, Hoogstrate WS, Verfaillie SCJ, Sluimer IC, van Schijndel RA, et al. Optimizing parameter choice for FSL-brain extraction tool (BET) on 3D T1 images in multiple sclerosis. NeuroImage. 2012;61(4):1484–94.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–55.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62(2):782–90.CrossRefGoogle Scholar
  9. 9.
    Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, et al. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 2009;45(1, Suppl. 1):S173–86.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Jenkinsen M, Pechaud M, Smith SM. BET2: MR-based estimation of brain, skull and scalp surfaces. Eleventh annual meeting of the organization for human brain mapping, Toronto, Ontario; 2004. p.~716.Google Scholar
  11. 11.
    Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM. Magnetic resonance image tissue classification using a partial volume model. NeuroImage. 2001;13(5):856–76.PubMedCrossRefGoogle Scholar
  12. 12.
    Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull stripping problem in MRI. NeuroImage. 2004;22(3):1060–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Iglesias JE, Liu CY, Thompson PM, Tu Z. Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans Med Imaging. 2011;30(9):1617–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Eskildsen SF, Coupé P, Fonov V, Manjón JV, Leung KK, Guizard N, et al. BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage. 2012;59(3):2362–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Shi F, Wang L, Dai Y, Gilmore JH, Lin W, Shen D. LABEL: pediatric brain extraction using learning-based meta-algorithm. NeuroImage. 2012;62(3):1975–86.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, et al. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage. 2016;129:460–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Duy NHM, Duy NM, Truong MTN, Bao PT, Binh NT. Accurate brain extraction using active shape model and convolutional neural networks. ArXiv180201268 Cs [Internet]. 2018. Available from: http://arxiv.org/abs/1802.01268. Accessed 21 May 2018.
  18. 18.
    Kahali S, Adhikari SK, Sing JK. On estimation of bias field in MRI images: polynomial vs Gaussian surface fitting method. J Chemom. 2016;30(10):602–20.CrossRefGoogle Scholar
  19. 19.
    Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17(1):87–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–20.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nyul LG, Udupa JK, Zhang X. New variants of a method of MRI scale standardization. IEEE Trans Med Imaging. 2000;19(2):143–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Sun X, Shi L, Luo Y, Yang W, Li H, Liang P, et al. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions. Biomed Eng Online [Internet]. 2015;14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517549/. Accessed 21 May 2018.
  23. 23.
    Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Andersson JLR, Jenkinson M, Smith S, Jenkinson M, Smith S, Andersson JLR, et al. Non-linear registration aka spatial normalisation FMRIB technical report TR07JA2. 2007. Available from: https://www.scienceopen.com/document?vid=13f3b9a9-6e99-4ae7-bea2-c1bf0af8ca6e. Accessed 21 May 2018.
  26. 26.
    Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54(3):2033–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. ArXiv171203747 Cs [Internet]. 2017. Available from: http://arxiv.org/abs/1712.03747. Accessed 30 April 2018.
  28. 28.
    Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.CrossRefGoogle Scholar
  29. 29.
    Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35(5):1240–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Akkus Z, Ali I, Sedlář J, et al. Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging. 2017;30(4):469–76.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Schemmel A, Lee M, Hanley T, Pooler BD, Kennedy T, Field A, et al. Radiology workflow disruptors: a detailed analysis. J Am Coll Radiol. 2016;13(10):1210–4.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Balint BJ, Steenburg SD, Lin H, Shen C, Steele JL, Gunderman RB. Do telephone call interruptions have an impact on radiology resident diagnostic accuracy? Acad Radiol. 2014;21(12):1623–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bhat A, Shih G, Zabih R. Automatic selection of radiological protocols using machine learning. In: Proceedings of the 2011 workshop on data mining for medicine and healthcare (DMMH ’11) [Internet]. New York: ACM; 2011. p. 52–5. Available from: http://doi.acm.org/10.1145/2023582.2023591. Accessed 22 May 2018.
  34. 34.
    Brown AD, Marotta TR. Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. J Am Med Inform Assoc. 2018;25(5):568–71.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, et al. Accelerating magnetic resonance imaging via deep learning. In: IEEE; 2016. p. 514–7. Available from: http://ieeexplore.ieee.org/document/7493320/. Accessed 22 May 2018.
  36. 36.
    Yang Y, Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R, editors. Advances in neural information processing systems 29 [Internet]. Curran Associates; 2016. p. 10–8. Available from: http://papers.nips.cc/paper/6406-deep-admm-net-for-compressive-sensing-mri.pdf
  37. 37.
    Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018;555(7697):487–92.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Golkov V, Dosovitskiy A, Sperl JI, Menzel MI, Czisch M, Sämann P, et al. q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging. 2016;35(5):1344–51.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kim KH, Choi SH, Park S-H. Improving arterial spin labeling by using deep learning. Radiology. 2017;287(2):658–66.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Law M, Wang R, Liu C-SJ, Shiroishi MS, Carmichael JD, Mack WJ, et al. Value of pituitary gland MRI at 7 T in Cushing’s disease and relationship to inferior petrosal sinus sampling: case report. J Neurosurg. 2018:1–5.  https://doi.org/10.3171/2017.9.JNS171969.
  41. 41.
    Schaap K, Vries YC, Mason CK, Vocht F, de Portengen L, Kromhout H. Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5–7 Tesla MRI scanners is associated with reporting of transient symptoms. Occup Env Med. 2014;71(6):423–9.CrossRefGoogle Scholar
  42. 42.
    Bahrami K, Shi F, Zong X, Shin HW, An H, Shen D. Reconstruction of 7T-like images from 3T MRI. IEEE Trans Med Imaging. 2016;35(9):2085–97.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Vemulapalli R, Nguyen HV, Zhou SK. Chapter 16 – deep networks and mutual information maximization for cross-modal medical image synthesis. In: Deep learning for medical image analysis [Internet]. Academic Press; 2017. p. 381–403. Available from: https://www.sciencedirect.com/science/article/pii/B9780128104088000225. Accessed 22 May 2018.CrossRefGoogle Scholar
  44. 44.
    Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology. 2017;286(2):676–84.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44(4):1408–19.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kalkers NF, Ameziane N, Bot JCJ, Minneboo A, Polman CH, Barkhof F. Longitudinal brain volume measurement in multiple sclerosis: rate of brain atrophy is independent of the disease subtype. Arch Neurol. 2002;59(10):1572–6.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Mollison D, Sellar R, Bastin M, Mollison D, Chandran S, Wardlaw J, et al. The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: a systematic review and meta-analysis. PLoS One. 2017;12(5):e0177727.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jack CR, Slomkowski M, Gracon S, Hoover TM, Felmlee JP, Stewart K, et al. MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology. 2003;60(2):253–60.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Simmons A, Westman E, Muehlboeck S, Mecocci P, Vellas B, Tsolaki M, et al. MRI measures of Alzheimer’s disease and the AddNeuroMed study. Ann N Y Acad Sci. 2009;1180(1):47–55.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bauer S, Wiest R, Nolte L-P, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013;58(13):R97.PubMedCrossRefGoogle Scholar
  51. 51.
    Landman BA, Ribbens A, Lucas B, Davatzikos C, Avants B, Ledig C, et al. MICCAI 2012 workshop on multi-atlas labeling. In: Warfield SK, editor. CreateSpace independent publishing platform; 2012. 164 p.Google Scholar
  52. 52.
    Mendrik AM, Vincken KL, Kuijf HJ, Breeuwer M, Bouvy WH, de Bresser J, et al. MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans [Internet]. In: Computational intelligence and neuroscience. 2015. Available from: https://www.hindawi.com/journals/cin/2015/813696/. Accessed 23 May 2018.CrossRefGoogle Scholar
  53. 53.
    Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2015;34(10):1993–2024.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, et al. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data [Internet]. 2017;4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685212/. Accessed 23 May 2018.
  55. 55.
    Kamnitsas K, Bai W, Ferrante E, McDonagh S, Sinclair M, Pawlowski N, et al. Ensembles of multiple models and architectures for robust brain tumour segmentation. ArXiv171101468 Cs [Internet]. 2017. Available from: http://arxiv.org/abs/1711.01468. Accessed 23 May 2018.
  56. 56.
    Brosch T, Tang LYW, Yoo Y, Li DKB, Traboulsee A, Tam R. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to Multiple sclerosis lesion segmentation. IEEE Trans Med Imaging. 2016;35(5): 1229–39.PubMedCrossRefGoogle Scholar
  57. 57.
    Valverde S, Cabezas M, Roura E, González-Villà S, Pareto D, Vilanova JC, et al. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage. 2017;155:159–68.PubMedCrossRefGoogle Scholar
  58. 58.
    Chen L, Carlton Jones AL, Mair G, Patel R, Gontsarova A, Ganesalingam J, et al. Rapid automated quantification of cerebral leukoaraiosis on CT images: a multicenter validation study. Radiology. 2018;288(2):573–81.  https://doi.org/10.1148/radiol.2018171567.CrossRefPubMedGoogle Scholar
  59. 59.
    Liew S-L, Anglin JM, Banks NW, Sondag M, Ito KL, Kim H, et al. A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci Data. 2018;5:180011.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Styner M, Lee J, Chin B, Chin MS, Commowick O, Tran H-H, et al. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation. MIDAS J. 2008;2008, 638.Google Scholar
  61. 61.
    Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, et al. Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage. 2017;148:77–102.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Commowick O, Cervenansky F, Ameli R. MSSEG challenge proceedings: multiple sclerosis lesions segmentation challenge using a data management and processing infrastructure [Internet]. 2016. Available from: http://www.hal.inserm.fr/inserm-01397806/document. Accessed 23 May 2018.
  63. 63.
    Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJNL, Išgum I. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging. 2016;35(5):1252–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen H, Dou Q, Yu L, Qin J, Heng P-A. VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage. 2018;170:446–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Wachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage. 2018;170:434–45.PubMedCrossRefGoogle Scholar
  66. 66.
    Chang PD. Fully convolutional deep residual neural networks for brain tumor segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries [Internet]. Cham: Springer; 2016. p. 108–8. (Lecture Notes in Computer Science). Available from: https://link.springer.com/chapter/10.1007/978-3-319-55524-9_11. Accessed 6 May 2018.CrossRefGoogle Scholar
  67. 67.
    AlBadawy EA, Ashirbani S, Mazurowski Maciej A. Deep learning for segmentation of brain tumors: impact of cross-institutional training and testing. Med Phys. 2018;45(3):1150–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation, 2017. 135(10):e146–603.Google Scholar
  69. 69.
    Yang Q, Tong X, Schieb L, Vaughan A, Gillespie C, Wiltz JL, et al. Vital signs: recent trends in stroke death rates – United States, 2000–2015. MMWR Morb Mortal Wkly Rep. 2017;66(35):933–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Saver JL. Time is brain—quantified. Stroke. 2006;37(1):263–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet. 2000;355(9216):1670–4.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nagel S, Sinha D, Day D, Reith W, Chapot R, Papanagiotou P, et al. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int J Stroke. 2017;12(6):615–22.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage Clin. 2017;15:633–43.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Maier O, Schröder C, Forkert ND, Martinetz T, Handels H. Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS One. 2015;10(12):e0145118.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Nielsen A, Hansen MB, Tietze A, Mouridsen K. Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke. 2018;49(6):1394–401.  https://doi.org/10.1161/STROKEAHA.117.019740.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hope TMH, Seghier ML, Leff AP, Price CJ. Predicting outcome and recovery after stroke with lesions extracted from MRI images. NeuroImage Clin. 2013;2:424–33.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hope TMH, Parker Jones Ō, Grogan A, Crinion J, Rae J, Ruffle L, et al. Comparing language outcomes in monolingual and bilingual stroke patients. Brain. 2015;138(4):1070–83.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rondina JM, Filippone M, Girolami M, Ward NS. Decoding post-stroke motor function from structural brain imaging. NeuroImage Clin. 2016;12:372–80.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Poptani H, Kaartinen J, Gupta RK, Niemitz M, Hiltunen Y, Kauppinen RA. Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer Res Clin Oncol. 1999;125(6): 343–9.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Shao Y, Lunetta RS. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J Photogramm Remote Sens. 2012;70:78–87.CrossRefGoogle Scholar
  82. 82.
    Emblem KE, Zoellner FG, Tennoe B, Nedregaard B, Nome T, Due-Tonnessen P, et al. Predictive modeling in glioma grading from MR perfusion images using support vector machines. Magn Reson Med. 2008;60(4):945–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Alcaide-Leon P, Dufort P, Geraldo AF, Alshafai L, Maralani PJ, Spears J, et al. Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. Am J Neuroradiol. 2017;38(6):1145–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Zacharaki EI, Wang S, Chawla S, Yoo DS, Wolf R, Melhem ER, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med. 2009;62(6):1609–18.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Zacharaki EI, Kanas VG, Davatzikos C. Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int J Comput Assist Radiol Surg. 2011;6(6):821–8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A, Pinho MC, Scheie D, et al. Machine learning in preoperative glioma MRI: survival associations by perfusion-based support vector machine outperforms traditional MRI. J Magn Reson Imaging. 2014;40(1):47–54.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J Magn Reson Imaging. 2017;46(1):115–23.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 2016;18(3):417–25.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S, et al. Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology. 2016;281(3):907–18.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Swinburne N, Schefflein J, Sakai Y, Oermann E, Titano J, Chen I, et al. Machine learning for semi-automated classification of glioblastoma, brain metastasis and CNS lymphoma using MR advanced imaging. Ann Transl Med. 2018;  https://doi.org/10.21037/atm.2018.08.05.
  91. 91.
    Kim HS, Goh MJ, Kim N, Choi CG, Kim SJ, Kim JH. Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology. 2014;273(3):831–43.PubMedCrossRefGoogle Scholar
  92. 92.
    Hu X, Wong KK, Young GS, Guo L, Wong ST. Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging. 2011;33(2):296–305.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Artzi M, Liberman G, Nadav G, Blumenthal DT, Bokstein F, Aizenstein O, et al. Differentiation between treatment-related changes and progressive disease in patients with high grade brain tumors using support vector machine classification based on DCE MRI. J Neurooncol. 2016;127(3):515–24.PubMedCrossRefGoogle Scholar
  94. 94.
    Tiwari P, Prasanna P, Wolansky L, Pinho M, Cohen M, Nayate AP, et al. Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. Am J Neuroradiol. 2016;37(12):2231–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Hong S-J, Kim H, Schrader D, Bernasconi N, Bernhardt BC, Bernasconi A. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology. 2014;83(1):48–55.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ahmed B, Brodley CE, Blackmon KE, Kuzniecky R, Barash G, Carlson C, et al. Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia. Epilepsy Behav. 2015;48:21–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Rudie JD, Colby JB, Salamon N. Machine learning classification of mesial temporal sclerosis in epilepsy patients. Epilepsy Res. 2015;117:63–9.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Chockley K, Emanuel E. The end of radiology? Three threats to the future practice of radiology. J Am Coll Radiol. 2016;13(12, Part A):1415–20.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Jha S, Topol EJ. Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA. 2016;316(22):2353–4.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Holodny AI. “Am I about to lose my job?!”: a comment on “computer-extracted texture features to distinguish cerebral radiation necrosis from recurrent brain tumors on multiparametric MRI: a feasibility study”. Am J Neuroradiol. 2016;37(12):2237–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Davenport TH, Keith J, Dreyer DO. AI will change radiology, but it won’t replace radiologists [Internet]. Harvard Business Review. 2018. Available from: https://hbr.org/2018/03/ai-will-change-radiology-but-it-wont-replace-radiologists. Accessed 25 May 2018.
  102. 102.
    Al-Ayyoub M, Alawad D, Al-Darabsah K, Aljarrah I. Automatic detection and classification of brain hemorrhages. WSEAS Trans Comput. 2013;12:395–405.Google Scholar
  103. 103.
    Scherer M, Cordes J, Younsi A, Sahin Y-A, Götz M, Möhlenbruch M, et al. Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke. 2016;47(11):2776–82.PubMedCrossRefGoogle Scholar
  104. 104.
    Phan A-C, Vo V-Q, Phan T-C. Automatic detection and classification of brain hemorrhages. In: Intelligent information and database systems [Internet]. Cham: Springer; 2018. p. 417–27. (Lecture Notes in Computer Science). Available from: https://link.springer.com/chapter/10.1007/978-3-319-75420-8_40. Accessed 6 May 2018.CrossRefGoogle Scholar
  105. 105.
    Desai V, Flanders AE, Lakhani P. Application of deep learning in neuroradiology: automated detection of basal ganglia hemorrhage using 2D-convolutional neural networks. ArXiv171003823 Cs [Internet]. 2017. Available from: http://arxiv.org/abs/1710.03823. Accessed 26 April 2018.
  106. 106.
    Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. ArXiv14094842 Cs [Internet]. 2014. Available from: http://arxiv.org/abs/1409.4842. Accessed 25 May 2018.
  107. 107.
    Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52.CrossRefGoogle Scholar
  108. 108.
    Phong TD, Duong HN, Nguyen HT, Trong NT, Nguyen VH, Van Hoa T, et al. Brain hemorrhage diagnosis by using deep learning. In: Proceedings of the 2017 international conference on machine learning and soft computing (ICMLSC ’17) [Internet]. New York: ACM; 2017. p. 34–9. Available from: http://doi.acm.org/10.1145/3036290.3036326. Accessed 25 May 2018.
  109. 109.
    Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD, Patel AA, et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. Npj Digit Med. 2018;1(1):9.CrossRefGoogle Scholar
  110. 110.
    Chokshi F, Shin B, Lee T, Lemmon A, Necessary S, Choi J. Natural language processing for classification of acute, communicable findings on unstructured head CT reports: comparison of neural network and non-neural machine learning techniques. bioRxiv. 2017;  https://doi.org/10.1101/173310.
  111. 111.
    Zech J, Pain M, Titano J, Badgeley M, Schefflein J, Su A, et al. Natural language-based machine learning models for the annotation of clinical radiology reports. Radiology. 2018;287(2):570–80.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Prevedello LM, Erdal BS, Ryu JL, Little KJ, Demirer M, Qian S, et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology. 2017;285(3):923–31.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Titano J, Badgeley M, Schefflein J, Pain M, Su A, Cai M, et al. Automated deep neural network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24(9):1337–41.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Speeches by FDA officials – transforming FDA’s approach to digital health [Internet]. Available from: https://www.fda.gov/NewsEvents/Speeches/ucm605697.htm. Accessed 30 May 2018.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Neuroradiology Service, Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations